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INTRODUCTION
The Boeing 737 is the best-selling aircraft in the world, with more 
than 15,000 planes sold. After Airbus announced an upgrade 
to the A320 that provided 14 percent better fuel economy per 
seat, Boeing responded with the 737 MAX. It was marketed as an 
upgrade to the famed 737 design, using larger engines to match 
the improved fuel efficiency from Airbus. Boeing claimed the 
737 MAX was so similar to the original 737 that pilots already 
licensed for this aircraft would not need additional training and 
simulator time for the 737 MAX.

Because Boeing increased the engine size to improve fuel 
efficiency, the engines had to be positioned higher on the wings 
and slightly forward of the old position. Higher nose landing gear 
was also added to provide the same ground clearance. The larger 
engines and new positions destabilized the aircraft, but not under 
all conditions. The engine housings are designed so they do not 
generate lift in normal flight. However, if the airplane is in a steep 
pitch (for example, takeoff or a hard turn), the engine housings 
generate more lift than on previous 737 models. Depending on 
the angle, the airplane's inertia can cause the plane to over-swing 
into a stall.

To address increased stall risk, Boeing developed a software 
solution called the maneuvering characteristics augmentation 
system (MCAS), which is part of the flight management computer 
software. No other commercial plane uses software like it, though 
Boeing uses a similar system on the KC-46 Pegasus military 
aircraft. The MCAS takes readings from the angle of attack (AoA) 
sensor to determine how the plane’s nose is pointed relative to 

In March 2019, Boeing 737 MAX 8 and 
MAX 9 aircraft were grounded in more 
than 41 countries, including the United 
States, Canada, and China, after an Ethiopian 
Airlines crash resulted in the deaths of every-
one on board. This was the second deadly 
crash involving a Boeing 737 MAX. A Lion 
Air (Indonesia) Boeing 737 MAX 8 crashed in 
October 2018, also killing everyone on board. 
As a result of these two incidents, Boeing 
paused delivery of these planes, although 
production continues. The Boeing 737 MAX 
story provides an alarming case study on the 
interrelationships between software and sys-
tems engineering, human factors, corporate 
behavior, and customer service. Although 
both crashes are still under investigation, 
and definitive answers are forthcoming, this 
article examines the events from the per-
spectives of safety and software quality and 
proposes five lessons practitioners can apply 
to their own projects to mitigate risk.
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the oncoming air. MCAS monitors airspeed, altitude, 
and AoA. When the software determines the angle of 
attack is too great, it automatically performs two actions 
to prevent a stall:

1.	 �Command the aircraft’s trim system to 
adjust the rear stabilizer and lower the nose.

2.	 �Push the pilot’s yoke in the down direction.

The movement of the rear stabilizer varies with the 
speed of the plane; it moves more at slower speeds and 
less at higher speeds. By default, the MCAS is active when 
autopilot is off and AoA is high or when the flaps are up. 
The MCAS will deactivate once the AoA measurement 
is below the target threshold, or the pilot overrides the 
system with a manual trim setting, or the pilot engages 
the CUTOUT switch (which disables automatic control 
of the stabilizer trim). If the pilot overrides the MCAS 
with trim controls, it will activate again within five 
seconds after the trim switches are released if the sensors 
still detect an AoA over the threshold. The only way to 
completely disable the system is to use the CUTOUT 
switch and take manual trim control.

Boeing designed the MCAS so it would not turn off 
in response to a pilot manually pulling the yoke. This 
would defeat the original purpose of the MCAS, which 
is to prevent the pilot from inadvertently entering a 
stall angle. This is significant because a pilot’s natural 
reaction to a plane that is pitching downward is to pull 
on the yoke and apply a counter-force to correct for 
the unexpected motion. For normal autopilot trim or 
runaway manual trim, pulling on the yoke does what is 
expected and triggers trim hold sensors.

People are under the impression that the column, 
yoke, steering wheel, gas pedal, and brakes fully control 
the response of the mechanical system. This is an 
illusion. Modern aircraft, like most modern cars, are 
“fly-by-wire.” Gone are the days of direct mechanical 
connections involving cables and hydraulic lines. Instead, 
most of the connections are electrical and mediated by 
a computer. In many ways, users are being continually 
“guarded” by the computers that mediate these con-
nections. It can be a terrible shock when the machine 
fights against the user.

THE SUSPECTED PROBLEM
The MCAS is suspected to have played a significant role 
in both crashes. During Lion Air flight JT610, MCAS 
repeatedly forced the plane’s nose down, even when the 

plane was not stalling. The pilots tried to correct it by 
pointing the nose higher, but the system kept pushing 
it down. This up-and-down oscillation happened 21 
times before the crash occurred. The Ethiopian Airlines 
crash showed a similar pattern. The company’s CEO 
believes the MCAS was active during the Ethiopian 
Airlines crash.

If the plane was not actually stalling, or even close 
to a stall angle, why was MCAS engaged? AoA sensors 
can be unreliable, a factor suggested in the Lion Air 
crash, where there was a 20-degree discrepancy in 
the plane’s two AoA sensor readings. The MCAS only 
reads the AoA sensor on its active corresponding side 
of the plane and does not cross-check the other sensor 
to confirm the reading. If a sensor malfunctions, the 
MCAS has no way to know.

If the MCAS was enabled erroneously, why did the 
pilots not disable the system? This is where the situ-
ation becomes muddled. The likeliest explanation for 
the Lion Air pilots is that they had no idea the MCAS 
existed, that it was active, or how they could disable it. 
MCAS is a unique piece of software among commercial 
airplanes; it only runs on the 737 MAX. Boeing sold 
and certified the 737 MAX as a minor upgrade to the 
737 body, which would not require pilots to re-certify 
or spend time training in simulators. As a result, it 
seems the existence of the MCAS was largely kept quiet.

After the Lion Air crash, Boeing released a bulletin 
providing details on how the MCAS system worked 
and how to counteract it in case of malfunction. The 
company also stated that emergency procedures that 
applied to earlier models would have corrected the 
problems observed in the Lion Air crash. The Lion 
Air pilots, though, likely fought against an automated 
system that was working against them. The system is 
most likely to activate at low altitudes, such as during 
takeoff, leaving the pilots little time to react. The 
Ethiopian Airlines pilots had heard about MCAS thanks 
to the bulletin, although one pilot commented, “We 
know more about the MCAS system from the media than 
from Boeing” (Fick and Neely 2019). Ethiopian Airlines 
installed one of the first simulators for the 737 MAX, 
but the pilot of the doomed flight had not yet received 
training in the simulator. All the authors know at the 
time of this writing is that the pilot reported “flight 
control problems” and wanted to return to the airport, 
and that the second crash resembled the first. They 
must wait for the preliminary report for more details.
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annunciations related to “poor training and even 
poorer documentation.”

“This is very poorly explained. I have no idea 
what switch the preflight is talking about, nor do I 
understand even now what this switch does. I think 
this entire setup needs to be thoroughly explained 
to pilots. How can a captain not know what switch 
is meant during a preflight setup? Poor training 
and even poorer documentation, that is how. It is 
not reassuring when a light cannot be explained 
or understood by the pilots, even after referencing 
their flight manuals. It is especially concerning 
when every other MAINT annunciation means 
something bad.”

ACN 1555013: 737 MAX First Officer reported 
feeling unprepared for first flight in the MAX, citing 
inadequate training.

“I had my first flight on the MAX… My post 
flight evaluation is that we lacked the knowledge 
to operate the aircraft in all weather and aircraft 
states safely. The instrumentation is completely 
different - my scan was degraded, slow and labored…
we were unable to navigate to systems pages and 
lacked the knowledge of what systems information 
was available to us in the different phases of flight. 
Our weather radar competency was inadequate to 
safely navigate significant weather on that dark and 
stormy night. These are just a few issues that were 
not addressed in our training.”

Rushed Release
Tight deadlines and rushed releases are not uncommon. 
When presented with a contract deadline or other similar 
requirement, the tendency can be to cut corners, make 
concessions, and ignore or mask problems — all to release 
a product by a specific date so the company does not lose 
business. At times like this, problems can be downplayed, 
and when they are observed by the customer, the work 
is deferred to a patch. 

Apparently, the 737 MAX project was subject to the same 
treatment. Gates (2019) reported the 737 MAX was nine 
months behind the new A320neo. Boeing managers had 
prodded engineers to speed up the production process, and 
if there wasn't time for FAA staff to complete a review, FAA 
managers either signed off on the documents themselves or 
delegated the review to Boeing. The FAA explained this by 
noting a lack of funding and resources to carry out due diligence. 

COMPOUNDING FACTORS
The initial analyses suggest that the MCAS software 
system was poorly designed and caused two plane 
crashes. But this is a complex situation, involving many 
people and organizations. In addition, other pilots had 
successfully struggled against the MCAS system and 
safely guided their passengers to their destination. 
Four contributing factors, observed in the Boeing case, 
have also been observed in other catastrophic software 
failures. They are: poor documentation, rushed release, 
delayed software updates, and humans out of the loop.

Poor Documentation
After the Lion Air crash, pilots complained that they 
had not been told about the MCAS or trained in how to 
respond when the system engages unexpectedly. This 
lack of documentation and training is especially danger-
ous when automated systems are involved and previous 
training does not fully apply. Tragically, black box 
recordings indicate Lion Air pilots frantically attempted 
to find answers in the manuals before they crashed.

Pilots take their documentation extremely seriously. 
Following are three reports from the Aviation Safety 
Reporting System (ASRS), which is run by NASA to 
provide pilots and crews with a way to confidentially 
report safety issues. Three reports highlighted next focus 
on the insufficiency of Boeing 737 MAX documentation.

ACN 1593017: 737 MAX Captain expressed concern 
that some systems such as the MCAS are not fully 
described in the aircraft flight manual. 

“I think it is unconscionable that a manufac-
turer, the FAA, and the airlines would have pilots 
flying an airplane without adequately training, or 
even providing available resources and sufficient 
documentation to understand the highly complex 
systems that differentiate this aircraft from prior 
models. The fact that this airplane requires such 
jury rigging to fly is a red flag. Now we know the 
systems employed are error prone--even if the pilots 
aren’t sure what those systems are, what redundan-
cies are in place, and failure modes. I am left to 
wonder: what else don’t I know? The flight manual 
is inadequate and almost criminally insufficient. 
All airlines that operate the MAX must insist that 
Boeing incorporate ALL systems in their manuals.”
ACN 1593021: 737 MAX Captain reported con-
fusion regarding switch function and display 
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and the initial NTSC report on the Lion Air crash (ASN 
2018) reveals that a single faulty AoA sensor triggered 
the MCAS. If a pilot or co-pilot noticed a strange AoA 
reading (such as a 20-degree difference between the two 
AoA sensors), he or she could perform a cross check by 
glancing at the reading on the other side of the plane. 
Additional sensors and gauges can be read to corroborate 
or disprove a strange AoA reading, and visual corrobora-
tion is also possible. What is even more troubling is that 
the system's behavior was opaque to the pilots. According 
to Boeing, the MCAS is (counterintuitively) only active 
in manual flight mode and is disabled under autopilot. 
MCAS controls the trim without notifying the pilots it 
is doing so.

Boeing did provide two optional features that would 
provide more insight into the situation: 1) an AoA indica-
tor, which displays the sensor readings; and 2) an AoA 
disagree light, which lights up if the two AoA sensors 
disagree. Because these were optional and carried an 
additional cost, many carriers did not elect to buy them. 

Computers can only perform pre-programmed 
actions, and a computer cannot take in additional data 
it was not programmed to read. Despite advances in 
deep learning, humans remain superior to computers 
in synthesizing complex information. For complex and 
safety-critical systems, humans must maintain the 
ability to override or overpower an automated process.

Boeing’s Response
A rapid response was triggered on behalf of Boeing to 
correct the issues and address public safety. Fehrm 
(2019) reported on the MCAS software update:

“Boeing has developed an MCAS software update 
to provide additional layers of protection if the AoA 
sensors provide erroneous data. The software was 
put through hundreds of hours of analysis, laboratory 
testing, verification in a simulator and two test flights, 
including an in-flight certification test with Federal 
Aviation Administration (FAA) representatives on board 
as observers.”

The update includes several significant changes, 
including:

•	The flight control system will now compare 
inputs from both AoA sensors.

•	 If the sensors disagree by 5.5 degrees or 
more with the flaps retracted, MCAS will not 
activate automatically.

•	An indicator on the flight deck display that 
 

As a result of this rushed process, a major change 
slipped through; the system safety analysis on MCAS 
claimed the horizontal tail movement was limited to 
0.6 degrees. Boeing engineers later found this number 
to be insufficient for preventing a stall in worst-case 
scenarios, so it was increased by a factor of four. The 
FAA was never informed of this engineering change, 
and FAA engineers did not learn about it until Boeing 
released the MCAS bulletin following the Lion Air crash. 

Gelles et al. (2019) corroborated the miscommunica-
tion and the details of the rushed release: “The pace 
of the work on the 737 Max was frenetic…the timeline 
was extremely compressed…it was go, go, go.” The 
workload, according to one designer, was double the 
norm. Engineers were under tremendous pressure, which 
is associated with increased levels of errors.

Delayed Software Updates
Weeks after the Lion Air crash, Boeing officials told the 
Southwest Airlines and American Airlines pilot’s unions 
that they planned to have software updates available 
around the end of 2018. However, the FAA reported work 
on evaluating the new MCAS software was delayed for 
five weeks by the government shutdown (Pasztor and 
Tangel 2018).

Consumers are conditioned to wait for fixes and 
updates. Teams are prone to idealistic estimates, and 
problems take longer than expected to diagnose, cor-
rect, and validate. As a result, schedules are repeatedly 
overrun. Any of these expected behaviors can have dire 
consequences. For example, an “enhancement” was 
submitted to the FAA for certification on January 21, 
only four days before the shutdown ended. This software 
update, submitted four months later than the initial 
estimate, will still require many more months to test, 
approve, and deploy. It is no comfort to the families of 
those who lost their lives on Ethiopian Airlines Flight 
302 that Boeing submitted a software fix for certification 
seven weeks before this fatal crash. 

There is a real cost to the delay of software updates, 
and that cost increases significantly with the impact 
of the issue. It is always better to take the necessary 
time to implement a robust design, incurring as many 
internal failures as needed, to avoid external failures 
that will require a patch. 

Humans Out of the Loop
The MCAS was designed to use a single data point 
from the AoA sensor on the active side of the plane, 
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7.	 Instead, Boeing created MCAS software to 
compensate for the aerodynamic impact of 
the new design, downplayed its novelty, and 
generated insufficient documentation and 
pilot training.

This is a systems engineering problem created by 
the company's design goals. Redesigning the airplane 
was out of the question because it would give Airbus a 
significant time advantage, necessitate expensive train-
ing (making the platform less attractive to buyers), and 
incur certification changes. To meet the design goals and 
avoid an expensive hardware change, Boeing created the 
MCAS as a software Band-Aid.

Applying software workarounds for silicon or hard-
ware design flaws is a major part of the work of firmware 
developers. Fixing hardware is expensive in terms of 
both time and money, and at some point, it becomes too 
late to change the hardware. The schedule drives the 
decision to move forward with known hardware design 
flaws. The next line is predictable: “The problem will 
just have to be fixed in software.” But software fixes 
do not always work. When the software workaround 
fails, companies seem to forget that they were already 
attempting to hide a problem.

The authors are not alone in the view that this is not 
a “software problem.” Sumner and Kammeyer (2019), the 
latter a pilot, explained that on both ill-fated flights, the 
following problems were experienced, each compounded 
by the next:

•	Sensor problem. The AoA vane on the 737 
MAX appears not to have been reliable and 
gave wildly incorrect readings. 

•	Maintenance practices problem. The previous 
crew had experienced the same problem and 
didn’t record the problem in the maintenance 
logbook.

•	Pilot training problem. On Lion Air, pilots 
were never even told about the MCAS, and by 
the time of the Ethiopian flight, an emergency 
bulletin had been issued, but no one had done 
simulator training on this failure.

•	Economic problem. Boeing sells an option 
package that includes an extra AoA vane and 
disagree light, which would let pilots know that 
this problem was happening. Both airplanes 
that crashed were delivered without this option. 
No 737 MAX with this option has ever crashed.

�alerts the pilots to AoA disagree condition will now 
ship as a standard feature.

•	MCAS can never command more stabilizer 
input than can be counteracted by the flight 
crew pulling back on the yoke.

•	The pilots will continue to always have the 
ability to override MCAS and manually 
control the airplane.

In addition to the software changes, extensive training 
changes are being made. Pilots will have to complete 21 
or more days of instructor-led academics and simula-
tor training. Computer-based training that includes 
MCAS, crew procedures, and related software changes 
will be made available to all 737 MAX pilots. Pilots 
will also be required to review and acknowledge new 
operations manuals, checklists, and quick reference 
documents. Undoubtedly, Boeing internal reviews  
will examine why these elements were not part of  
earlier releases.

IS THE PROBLEM 
BAD SOFTWARE?
It is tempting to label the 737 MAX issues as “caused by 
software.” At some level, this is true. However, the MCAS 
appears to be characterized by a quickly applied software 
patch introduced within a larger systems context:

1.	 Fuel is expensive, and more efficient engines 
will reduce that burden.

2.	 Competitive pressure from Airbus placed 
pressure on Boeing to respond with its own 
improved platform.

3.	 The timeline was largely dictated by Airbus, 
not the time Boeing engineers needed to 
complete the project.

4.	 Boeing wanted to stick to the 737 platform to 
achieve faster time to market, lower cost for 
production and certification, and improved 
pilot familiarity (meaning lower training 
costs).

5.	 Bigger engines did not fit on the existing 737 
platform, so design modifications were needed.

6.	 These modifications changed the 
aerodynamics of the airplane, which should 
have driven additional requirements for 
certification and training.
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the overall system was more complex than it anticipated. 
A system cannot be optimized by optimizing the 

individual parts. Similarly, eliminating an unwanted 
component or defect does not guarantee an improve-
ment in system performance. Most software engineers 
are familiar with the experience of fixing a bug, only to 
have a new bug (or several bugs) appear as a result of the 
initial fix. Finding and removing defects is not a way to 
improve the overall quality or performance of a system.

The larger engines on the 737 airframe resulted in 
undesirable aerodynamic characteristics (excessive 
upward pitch at steep AoA). Boeing responded by 
attempting to address this defect with the MCAS, but 
the MCAS does not unilaterally improve the overall 
quality or performance of the aircraft. Software and 
engineering professionals can address these challenges 
by asking what aspects of a system are they trying to 
force. By broadening one’s perspective and examining 
different approaches at the system level, a better solution 
may be discovered.

Set the Right Aim
Boeing's aim was to keep up with Airbus, leading to an 
aggressive time-to-market. It also wanted to minimize 
design changes to ease certification and ensure that 
pilots did not need to receive new training. Those are 
the principles that appear to have guided the company’s 
actions. Safety was still a concern, but it was not the 
focus of the organization, system, or schedule.

Ackoff (1994) explains that “an improvement program 
must be directed at what you want, not at what you don’t 
want.” On one level, Boeing aimed for a new aircraft with 
improved fuel efficiency to compete with Airbus. At the 
same time, Boeing wanted to do this on a timeline that 
would not delay the company significantly with regard to 
the Airbus launch. Boeing also wanted to minimize crew 
training requirements, which further constrained the 
design. The focus was on the things it did not want. A focus 
on safety might have led to a redesigned airframe that would 
support larger engines, albeit at greater time-to-market.

Treat Documentation as 
a First-Class Citizen
If other people will use a product, the developer of the 
product needs to provide useful and comprehensive docu-
mentation and training. This is extremely important not 
only to the users, but also to the engineers and managers 
who will maintain and develop the product in the future. 

•	Pilot practice problem. If the pilots had 
correctly and quickly identified the problem 
and run the stab trim runaway checklist, they 
would not have crashed.

Their closing point is austere: “Nowhere in here is 
there a software problem. The computers and software 
performed their jobs according to spec without error. 
The specification was just ****ty. Now the quickest way 
for Boeing to solve this mess is to call up the software 
guys to come up with another Band-Aid.”

What would prevent this cascade? Maybe the idea of 
a safety culture? When optimizing for time-to-market 
and reduced costs, will safety ever be a priority? After 
the resulting deaths, loss in market position, and 
destruction of trust, one must wonder if Boeing will ever 
realize the time and cost savings it hoped the software 
fix would provide.

LESSONS LEARNED
A complex system operated in an unexpected manner, 
and 346 people are dead as a result of two tragic and 
catastrophic accidents. Though the lives cannot be 
restored, if many systems and software engineers can 
learn as much as possible about this case, such deaths 
can be prevented in the future.

People Cannot Bend Complex 
Systems to Their Will
Boeing took an existing system and tried to change it 
to force a specific economic and time-bound outcome. 
But all changes to complex systems have unintended 
consequences. Meadows (2001) explains “self-organizing, 
nonlinear, feedback systems are inherently unpredict-
able…not controllable…understandable only in the most 
general way…. For any objective other than the most 
trivial, we can’t optimize; we don’t even know what to 
optimize. We can’t keep track of everything.” Although 
complex systems cannot be controlled, they can be 
designed, redesigned, and nudged. Through observation 
and interaction, people can learn how to work with and 
within these systems. 

These points are echoed by Ackoff (1994): “A system is 
not the sum of the behavior of its parts, it is a product of 
their interactions. The performance of a system depends 
on how the parts fit, not how they act taken separately.” 
Boeing changed a few parts of the plane and expected 
overall performance to be improved, but the effect on
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automation, cockpit design and human factors research 
in planes” (Yoshida 2019).

Testing Doesn’t Keep People Safe
Koopman, Kane, and Black (2019) recently described 
“The Insufficient Testing Pitfall.” They note: “Testing 
less than the target failure rate doesn’t prove you are 
safe. In fact, you probably need to test for about 10x 
the target failure rate to be reasonably sure you’ve met 
it. For life critical systems this means too much testing 
to be feasible.”

There is no doubt the airplane and all its software 
were intricately and extensively tested. In addition, 
the software would have been extensively leveraged in 
simulators and in test flights. But it seems Boeing did 
not test the system enough to encounter these problems. 
And even if it did, what other problems would still be 
missed? Companies need better plans for proving their 
software works safely. Reliance on testing is not enough.

This Can Happen in Other 
Organizations
It’s easy for people to read about these disasters, or any 
other similar incidents caused by humans, and think they 
personally would never have let such a thing happen. But 
most engineers have worked on fast-paced engineering 
projects and have had to make compromises to meet 
deadlines. Some compromises may have been personally 
initiated, while others were suggested or ordered by 
management. Regardless of the source, catastrophic 
events have far-reaching psychological and emotional 
consequences for those who are closely involved. After 
the Lion Air crash, Boeing offered trauma counseling 
to engineers who had worked on the plane. A technical 
manager reported that his staff were devastated.

One must also remember that nobody at Boeing 
wanted to trade human lives for increased profits. All 
human organizations — including families, companies, 
industries, governments — are complex systems and 
have a life of their own. Despite individual beliefs and 
priorities, organizations can make and execute decisions 
that none of the participants truly want, such as shipping 
a compromised product or prioritizing profits over safety.

The organization rallied around the goals of time-
to-market and minimizing required pilot training. 
Momentum and inertia kept the company marching 
toward its aim, even if individuals disagreed. The 
deprioritization of safety was likely silent: there was no

Documentation also promotes deeper understanding: if a 
person cannot explain something in simple terms, then 
that person does not understand it. If it is not explained, 
nobody has a chance of understanding it.

In aviation, pilots are fanatical about documentation, 
and for good reasons. In this case, improved documenta-
tion would have led to a better understanding of the 
system forces at work, and alone could have potentially 
saved hundreds of lives. But one high-ranking Boeing 
official said the company had decided against disclosing 
more details to cockpit crews due to concerns about 
inundating average pilots with too much information – 
and significantly more technical data – than they needed 
or could digest (Pasztor and Tangel 2018).

Software teams often take this view of their users. 
Perhaps it is simply a rationalization for not wanting to 
put the effort into creating and maintaining documen-
tation. How can one predict what information people 
need to know? What is too technical? What is enough 
information? Won’t the details change as the system 
evolves? How will the documentation be maintained? 
Software teams hinder themselves when they neglect 
documentation. The documentation process can help 
new team members learn how a system is designed  
and functions. Ideas for simplification will reveal  
themselves, and novel ways to use the software in 
ordinary cases and edge cases will be encountered. 
Most importantly, poorly understood system aspects 
can suddenly become obvious.

Keep Humans in the Loop
People must maintain the ability to override or overpower 
an automated process. Especially when trained properly, 
humans excel at dynamic information collection and 
synthesis, and can improvise and make novel decisions 
in response to new situations. A computer, which has 
been preprogrammed to read from a limited amount of 
information and perform a set of specific responses, is 
not capable of improvising.

System designers and programmers are not all-
knowing. When translating from design to operations, 
humans should be kept in every feedback loop. Operators 
should be able to override automated processes when 
and if they determine it is necessary to do so. “What 
we have here is a ‘failure of the intended function,’” 
remarked industry research analyst Colin Barnden. “A 
plane shouldn’t fight the pilot and fly into the ground. 
This is happening after decades of R&D into aviation 



www.asq.org  11

The Boeing 737 MAX Saga: Lessons for Software Organizations

ACKNOWLEDGEMENTS
The authors wish to thank Stephen Smith for reviewing early drafts of 
this essay. His feedback and discussion points were incorporated into 
the version of this essay at https://embeddedartistry.com/blog/2019/4/1/
what-can-software-organizations-learn-from-the-boeing-737-max-saga. 
In addition, thanks are offered to the journalists and aviation enthusiasts 
who have published brilliant coverage and analysis for the 737 MAX case 
from which the material herein has been distilled.

villainous CEO forcing his or her minions to compromise 
the product. There was not an entire organization whose 
individuals decided to collectively disregard safety.

Boeing made the same kinds of incremental decisions 
that are being made in many other organizations on a 
daily basis. Everyone has a duty to aim higher.

FIGURE 1  While the automatic trim (Trim Automatic in the below figure) was forcing  
the aircraft down, the pilots countered by pointing it back up (see Trim Manual 
above Trim Automatic). (KNKT 2018)
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