
4  SQP VOL. 21, NO. 3/© 2019, ASQ

S A F E T Y A N D A U T O M A T I O N

The Boeing
737 MAX

Saga: Lessons
for Software
Organizations

PHILLIP JOHNSTON AND ROZI HARRIS

INTRODUCTION
The Boeing 737 is the best-selling aircraft in the world, with more
than 15,000 planes sold. After Airbus announced an upgrade
to the A320 that provided 14 percent better fuel economy per
seat, Boeing responded with the 737 MAX. It was marketed as an
upgrade to the famed 737 design, using larger engines to match
the improved fuel efficiency from Airbus. Boeing claimed the
737 MAX was so similar to the original 737 that pilots already
licensed for this aircraft would not need additional training and
simulator time for the 737 MAX.

Because Boeing increased the engine size to improve fuel
efficiency, the engines had to be positioned higher on the wings
and slightly forward of the old position. Higher nose landing gear
was also added to provide the same ground clearance. The larger
engines and new positions destabilized the aircraft, but not under
all conditions. The engine housings are designed so they do not
generate lift in normal flight. However, if the airplane is in a steep
pitch (for example, takeoff or a hard turn), the engine housings
generate more lift than on previous 737 models. Depending on
the angle, the airplane's inertia can cause the plane to over-swing
into a stall.

To address increased stall risk, Boeing developed a software
solution called the maneuvering characteristics augmentation
system (MCAS), which is part of the flight management computer
software. No other commercial plane uses software like it, though
Boeing uses a similar system on the KC-46 Pegasus military
aircraft. The MCAS takes readings from the angle of attack (AoA)
sensor to determine how the plane’s nose is pointed relative to

In March 2019, Boeing 737 MAX 8 and
MAX 9 aircraft were grounded in more
than 41 countries, including the United
States, Canada, and China, after an Ethiopian
Airlines crash resulted in the deaths of every-
one on board. This was the second deadly
crash involving a Boeing 737 MAX. A Lion
Air (Indonesia) Boeing 737 MAX 8 crashed in
October 2018, also killing everyone on board.
As a result of these two incidents, Boeing
paused delivery of these planes, although
production continues. The Boeing 737 MAX
story provides an alarming case study on the
interrelationships between software and sys-
tems engineering, human factors, corporate
behavior, and customer service. Although
both crashes are still under investigation,
and definitive answers are forthcoming, this
article examines the events from the per-
spectives of safety and software quality and
proposes five lessons practitioners can apply
to their own projects to mitigate risk.

KEY WORDS

complex systems, risk, risk mitigation, safety,
software quality, systems thinking

www.asq.org  5

The Boeing 737 MAX Saga: Lessons for Software Organizations

the oncoming air. MCAS monitors airspeed, altitude,
and AoA. When the software determines the angle of
attack is too great, it automatically performs two actions
to prevent a stall:

1.	 �Command the aircraft’s trim system to
adjust the rear stabilizer and lower the nose.

2.	 �Push the pilot’s yoke in the down direction.

The movement of the rear stabilizer varies with the
speed of the plane; it moves more at slower speeds and
less at higher speeds. By default, the MCAS is active when
autopilot is off and AoA is high or when the flaps are up.
The MCAS will deactivate once the AoA measurement
is below the target threshold, or the pilot overrides the
system with a manual trim setting, or the pilot engages
the CUTOUT switch (which disables automatic control
of the stabilizer trim). If the pilot overrides the MCAS
with trim controls, it will activate again within five
seconds after the trim switches are released if the sensors
still detect an AoA over the threshold. The only way to
completely disable the system is to use the CUTOUT
switch and take manual trim control.

Boeing designed the MCAS so it would not turn off
in response to a pilot manually pulling the yoke. This
would defeat the original purpose of the MCAS, which
is to prevent the pilot from inadvertently entering a
stall angle. This is significant because a pilot’s natural
reaction to a plane that is pitching downward is to pull
on the yoke and apply a counter-force to correct for
the unexpected motion. For normal autopilot trim or
runaway manual trim, pulling on the yoke does what is
expected and triggers trim hold sensors.

People are under the impression that the column,
yoke, steering wheel, gas pedal, and brakes fully control
the response of the mechanical system. This is an
illusion. Modern aircraft, like most modern cars, are
“fly-by-wire.” Gone are the days of direct mechanical
connections involving cables and hydraulic lines. Instead,
most of the connections are electrical and mediated by
a computer. In many ways, users are being continually
“guarded” by the computers that mediate these con-
nections. It can be a terrible shock when the machine
fights against the user.

THE SUSPECTED PROBLEM
The MCAS is suspected to have played a significant role
in both crashes. During Lion Air flight JT610, MCAS
repeatedly forced the plane’s nose down, even when the

plane was not stalling. The pilots tried to correct it by
pointing the nose higher, but the system kept pushing
it down. This up-and-down oscillation happened 21
times before the crash occurred. The Ethiopian Airlines
crash showed a similar pattern. The company’s CEO
believes the MCAS was active during the Ethiopian
Airlines crash.

If the plane was not actually stalling, or even close
to a stall angle, why was MCAS engaged? AoA sensors
can be unreliable, a factor suggested in the Lion Air
crash, where there was a 20-degree discrepancy in
the plane’s two AoA sensor readings. The MCAS only
reads the AoA sensor on its active corresponding side
of the plane and does not cross-check the other sensor
to confirm the reading. If a sensor malfunctions, the
MCAS has no way to know.

If the MCAS was enabled erroneously, why did the
pilots not disable the system? This is where the situ-
ation becomes muddled. The likeliest explanation for
the Lion Air pilots is that they had no idea the MCAS
existed, that it was active, or how they could disable it.
MCAS is a unique piece of software among commercial
airplanes; it only runs on the 737 MAX. Boeing sold
and certified the 737 MAX as a minor upgrade to the
737 body, which would not require pilots to re-certify
or spend time training in simulators. As a result, it
seems the existence of the MCAS was largely kept quiet.

After the Lion Air crash, Boeing released a bulletin
providing details on how the MCAS system worked
and how to counteract it in case of malfunction. The
company also stated that emergency procedures that
applied to earlier models would have corrected the
problems observed in the Lion Air crash. The Lion
Air pilots, though, likely fought against an automated
system that was working against them. The system is
most likely to activate at low altitudes, such as during
takeoff, leaving the pilots little time to react. The
Ethiopian Airlines pilots had heard about MCAS thanks
to the bulletin, although one pilot commented, “We
know more about the MCAS system from the media than
from Boeing” (Fick and Neely 2019). Ethiopian Airlines
installed one of the first simulators for the 737 MAX,
but the pilot of the doomed flight had not yet received
training in the simulator. All the authors know at the
time of this writing is that the pilot reported “flight
control problems” and wanted to return to the airport,
and that the second crash resembled the first. They
must wait for the preliminary report for more details.

6  SQP VOL. 21, NO. 3/© 2019, ASQ

The Boeing 737 MAX Saga: Lessons for Software Organizations

annunciations related to “poor training and even
poorer documentation.”

“This is very poorly explained. I have no idea
what switch the preflight is talking about, nor do I
understand even now what this switch does. I think
this entire setup needs to be thoroughly explained
to pilots. How can a captain not know what switch
is meant during a preflight setup? Poor training
and even poorer documentation, that is how. It is
not reassuring when a light cannot be explained
or understood by the pilots, even after referencing
their flight manuals. It is especially concerning
when every other MAINT annunciation means
something bad.”

ACN 1555013: 737 MAX First Officer reported
feeling unprepared for first flight in the MAX, citing
inadequate training.

“I had my first flight on the MAX… My post
flight evaluation is that we lacked the knowledge
to operate the aircraft in all weather and aircraft
states safely. The instrumentation is completely
different - my scan was degraded, slow and labored…
we were unable to navigate to systems pages and
lacked the knowledge of what systems information
was available to us in the different phases of flight.
Our weather radar competency was inadequate to
safely navigate significant weather on that dark and
stormy night. These are just a few issues that were
not addressed in our training.”

Rushed Release
Tight deadlines and rushed releases are not uncommon.
When presented with a contract deadline or other similar
requirement, the tendency can be to cut corners, make
concessions, and ignore or mask problems — all to release
a product by a specific date so the company does not lose
business. At times like this, problems can be downplayed,
and when they are observed by the customer, the work
is deferred to a patch.

Apparently, the 737 MAX project was subject to the same
treatment. Gates (2019) reported the 737 MAX was nine
months behind the new A320neo. Boeing managers had
prodded engineers to speed up the production process, and
if there wasn't time for FAA staff to complete a review, FAA
managers either signed off on the documents themselves or
delegated the review to Boeing. The FAA explained this by
noting a lack of funding and resources to carry out due diligence.

COMPOUNDING FACTORS
The initial analyses suggest that the MCAS software
system was poorly designed and caused two plane
crashes. But this is a complex situation, involving many
people and organizations. In addition, other pilots had
successfully struggled against the MCAS system and
safely guided their passengers to their destination.
Four contributing factors, observed in the Boeing case,
have also been observed in other catastrophic software
failures. They are: poor documentation, rushed release,
delayed software updates, and humans out of the loop.

Poor Documentation
After the Lion Air crash, pilots complained that they
had not been told about the MCAS or trained in how to
respond when the system engages unexpectedly. This
lack of documentation and training is especially danger-
ous when automated systems are involved and previous
training does not fully apply. Tragically, black box
recordings indicate Lion Air pilots frantically attempted
to find answers in the manuals before they crashed.

Pilots take their documentation extremely seriously.
Following are three reports from the Aviation Safety
Reporting System (ASRS), which is run by NASA to
provide pilots and crews with a way to confidentially
report safety issues. Three reports highlighted next focus
on the insufficiency of Boeing 737 MAX documentation.

ACN 1593017: 737 MAX Captain expressed concern
that some systems such as the MCAS are not fully
described in the aircraft flight manual.

“I think it is unconscionable that a manufac-
turer, the FAA, and the airlines would have pilots
flying an airplane without adequately training, or
even providing available resources and sufficient
documentation to understand the highly complex
systems that differentiate this aircraft from prior
models. The fact that this airplane requires such
jury rigging to fly is a red flag. Now we know the
systems employed are error prone--even if the pilots
aren’t sure what those systems are, what redundan-
cies are in place, and failure modes. I am left to
wonder: what else don’t I know? The flight manual
is inadequate and almost criminally insufficient.
All airlines that operate the MAX must insist that
Boeing incorporate ALL systems in their manuals.”
ACN 1593021: 737 MAX Captain reported con-
fusion regarding switch function and display

www.asq.org  7

The Boeing 737 MAX Saga: Lessons for Software Organizations

and the initial NTSC report on the Lion Air crash (ASN
2018) reveals that a single faulty AoA sensor triggered
the MCAS. If a pilot or co-pilot noticed a strange AoA
reading (such as a 20-degree difference between the two
AoA sensors), he or she could perform a cross check by
glancing at the reading on the other side of the plane.
Additional sensors and gauges can be read to corroborate
or disprove a strange AoA reading, and visual corrobora-
tion is also possible. What is even more troubling is that
the system's behavior was opaque to the pilots. According
to Boeing, the MCAS is (counterintuitively) only active
in manual flight mode and is disabled under autopilot.
MCAS controls the trim without notifying the pilots it
is doing so.

Boeing did provide two optional features that would
provide more insight into the situation: 1) an AoA indica-
tor, which displays the sensor readings; and 2) an AoA
disagree light, which lights up if the two AoA sensors
disagree. Because these were optional and carried an
additional cost, many carriers did not elect to buy them.

Computers can only perform pre-programmed
actions, and a computer cannot take in additional data
it was not programmed to read. Despite advances in
deep learning, humans remain superior to computers
in synthesizing complex information. For complex and
safety-critical systems, humans must maintain the
ability to override or overpower an automated process.

Boeing’s Response
A rapid response was triggered on behalf of Boeing to
correct the issues and address public safety. Fehrm
(2019) reported on the MCAS software update:

“Boeing has developed an MCAS software update
to provide additional layers of protection if the AoA
sensors provide erroneous data. The software was
put through hundreds of hours of analysis, laboratory
testing, verification in a simulator and two test flights,
including an in-flight certification test with Federal
Aviation Administration (FAA) representatives on board
as observers.”

The update includes several significant changes,
including:

•	The flight control system will now compare
inputs from both AoA sensors.

•	 If the sensors disagree by 5.5 degrees or
more with the flaps retracted, MCAS will not
activate automatically.

•	An indicator on the flight deck display that

As a result of this rushed process, a major change
slipped through; the system safety analysis on MCAS
claimed the horizontal tail movement was limited to
0.6 degrees. Boeing engineers later found this number
to be insufficient for preventing a stall in worst-case
scenarios, so it was increased by a factor of four. The
FAA was never informed of this engineering change,
and FAA engineers did not learn about it until Boeing
released the MCAS bulletin following the Lion Air crash.

Gelles et al. (2019) corroborated the miscommunica-
tion and the details of the rushed release: “The pace
of the work on the 737 Max was frenetic…the timeline
was extremely compressed…it was go, go, go.” The
workload, according to one designer, was double the
norm. Engineers were under tremendous pressure, which
is associated with increased levels of errors.

Delayed Software Updates
Weeks after the Lion Air crash, Boeing officials told the
Southwest Airlines and American Airlines pilot’s unions
that they planned to have software updates available
around the end of 2018. However, the FAA reported work
on evaluating the new MCAS software was delayed for
five weeks by the government shutdown (Pasztor and
Tangel 2018).

Consumers are conditioned to wait for fixes and
updates. Teams are prone to idealistic estimates, and
problems take longer than expected to diagnose, cor-
rect, and validate. As a result, schedules are repeatedly
overrun. Any of these expected behaviors can have dire
consequences. For example, an “enhancement” was
submitted to the FAA for certification on January 21,
only four days before the shutdown ended. This software
update, submitted four months later than the initial
estimate, will still require many more months to test,
approve, and deploy. It is no comfort to the families of
those who lost their lives on Ethiopian Airlines Flight
302 that Boeing submitted a software fix for certification
seven weeks before this fatal crash.

There is a real cost to the delay of software updates,
and that cost increases significantly with the impact
of the issue. It is always better to take the necessary
time to implement a robust design, incurring as many
internal failures as needed, to avoid external failures
that will require a patch.

Humans Out of the Loop
The MCAS was designed to use a single data point
from the AoA sensor on the active side of the plane,

8  SQP VOL. 21, NO. 3/© 2019, ASQ

The Boeing 737 MAX Saga: Lessons for Software Organizations

7.	 Instead, Boeing created MCAS software to
compensate for the aerodynamic impact of
the new design, downplayed its novelty, and
generated insufficient documentation and
pilot training.

This is a systems engineering problem created by
the company's design goals. Redesigning the airplane
was out of the question because it would give Airbus a
significant time advantage, necessitate expensive train-
ing (making the platform less attractive to buyers), and
incur certification changes. To meet the design goals and
avoid an expensive hardware change, Boeing created the
MCAS as a software Band-Aid.

Applying software workarounds for silicon or hard-
ware design flaws is a major part of the work of firmware
developers. Fixing hardware is expensive in terms of
both time and money, and at some point, it becomes too
late to change the hardware. The schedule drives the
decision to move forward with known hardware design
flaws. The next line is predictable: “The problem will
just have to be fixed in software.” But software fixes
do not always work. When the software workaround
fails, companies seem to forget that they were already
attempting to hide a problem.

The authors are not alone in the view that this is not
a “software problem.” Sumner and Kammeyer (2019), the
latter a pilot, explained that on both ill-fated flights, the
following problems were experienced, each compounded
by the next:

•	Sensor problem. The AoA vane on the 737
MAX appears not to have been reliable and
gave wildly incorrect readings.

•	Maintenance practices problem. The previous
crew had experienced the same problem and
didn’t record the problem in the maintenance
logbook.

•	Pilot training problem. On Lion Air, pilots
were never even told about the MCAS, and by
the time of the Ethiopian flight, an emergency
bulletin had been issued, but no one had done
simulator training on this failure.

•	Economic problem. Boeing sells an option
package that includes an extra AoA vane and
disagree light, which would let pilots know that
this problem was happening. Both airplanes
that crashed were delivered without this option.
No 737 MAX with this option has ever crashed.

�alerts the pilots to AoA disagree condition will now
ship as a standard feature.

•	MCAS can never command more stabilizer
input than can be counteracted by the flight
crew pulling back on the yoke.

•	The pilots will continue to always have the
ability to override MCAS and manually
control the airplane.

In addition to the software changes, extensive training
changes are being made. Pilots will have to complete 21
or more days of instructor-led academics and simula-
tor training. Computer-based training that includes
MCAS, crew procedures, and related software changes
will be made available to all 737 MAX pilots. Pilots
will also be required to review and acknowledge new
operations manuals, checklists, and quick reference
documents. Undoubtedly, Boeing internal reviews
will examine why these elements were not part of
earlier releases.

IS THE PROBLEM
BAD SOFTWARE?
It is tempting to label the 737 MAX issues as “caused by
software.” At some level, this is true. However, the MCAS
appears to be characterized by a quickly applied software
patch introduced within a larger systems context:

1.	 Fuel is expensive, and more efficient engines
will reduce that burden.

2.	 Competitive pressure from Airbus placed
pressure on Boeing to respond with its own
improved platform.

3.	 The timeline was largely dictated by Airbus,
not the time Boeing engineers needed to
complete the project.

4.	 Boeing wanted to stick to the 737 platform to
achieve faster time to market, lower cost for
production and certification, and improved
pilot familiarity (meaning lower training
costs).

5.	 Bigger engines did not fit on the existing 737
platform, so design modifications were needed.

6.	 These modifications changed the
aerodynamics of the airplane, which should
have driven additional requirements for
certification and training.

www.asq.org  9

The Boeing 737 MAX Saga: Lessons for Software Organizations

the overall system was more complex than it anticipated.
A system cannot be optimized by optimizing the

individual parts. Similarly, eliminating an unwanted
component or defect does not guarantee an improve-
ment in system performance. Most software engineers
are familiar with the experience of fixing a bug, only to
have a new bug (or several bugs) appear as a result of the
initial fix. Finding and removing defects is not a way to
improve the overall quality or performance of a system.

The larger engines on the 737 airframe resulted in
undesirable aerodynamic characteristics (excessive
upward pitch at steep AoA). Boeing responded by
attempting to address this defect with the MCAS, but
the MCAS does not unilaterally improve the overall
quality or performance of the aircraft. Software and
engineering professionals can address these challenges
by asking what aspects of a system are they trying to
force. By broadening one’s perspective and examining
different approaches at the system level, a better solution
may be discovered.

Set the Right Aim
Boeing's aim was to keep up with Airbus, leading to an
aggressive time-to-market. It also wanted to minimize
design changes to ease certification and ensure that
pilots did not need to receive new training. Those are
the principles that appear to have guided the company’s
actions. Safety was still a concern, but it was not the
focus of the organization, system, or schedule.

Ackoff (1994) explains that “an improvement program
must be directed at what you want, not at what you don’t
want.” On one level, Boeing aimed for a new aircraft with
improved fuel efficiency to compete with Airbus. At the
same time, Boeing wanted to do this on a timeline that
would not delay the company significantly with regard to
the Airbus launch. Boeing also wanted to minimize crew
training requirements, which further constrained the
design. The focus was on the things it did not want. A focus
on safety might have led to a redesigned airframe that would
support larger engines, albeit at greater time-to-market.

Treat Documentation as
a First-Class Citizen
If other people will use a product, the developer of the
product needs to provide useful and comprehensive docu-
mentation and training. This is extremely important not
only to the users, but also to the engineers and managers
who will maintain and develop the product in the future.

•	Pilot practice problem. If the pilots had
correctly and quickly identified the problem
and run the stab trim runaway checklist, they
would not have crashed.

Their closing point is austere: “Nowhere in here is
there a software problem. The computers and software
performed their jobs according to spec without error.
The specification was just ****ty. Now the quickest way
for Boeing to solve this mess is to call up the software
guys to come up with another Band-Aid.”

What would prevent this cascade? Maybe the idea of
a safety culture? When optimizing for time-to-market
and reduced costs, will safety ever be a priority? After
the resulting deaths, loss in market position, and
destruction of trust, one must wonder if Boeing will ever
realize the time and cost savings it hoped the software
fix would provide.

LESSONS LEARNED
A complex system operated in an unexpected manner,
and 346 people are dead as a result of two tragic and
catastrophic accidents. Though the lives cannot be
restored, if many systems and software engineers can
learn as much as possible about this case, such deaths
can be prevented in the future.

People Cannot Bend Complex
Systems to Their Will
Boeing took an existing system and tried to change it
to force a specific economic and time-bound outcome.
But all changes to complex systems have unintended
consequences. Meadows (2001) explains “self-organizing,
nonlinear, feedback systems are inherently unpredict-
able…not controllable…understandable only in the most
general way…. For any objective other than the most
trivial, we can’t optimize; we don’t even know what to
optimize. We can’t keep track of everything.” Although
complex systems cannot be controlled, they can be
designed, redesigned, and nudged. Through observation
and interaction, people can learn how to work with and
within these systems.

These points are echoed by Ackoff (1994): “A system is
not the sum of the behavior of its parts, it is a product of
their interactions. The performance of a system depends
on how the parts fit, not how they act taken separately.”
Boeing changed a few parts of the plane and expected
overall performance to be improved, but the effect on

10  SQP VOL. 21, NO. 3/© 2019, ASQ

The Boeing 737 MAX Saga: Lessons for Software Organizations

automation, cockpit design and human factors research
in planes” (Yoshida 2019).

Testing Doesn’t Keep People Safe
Koopman, Kane, and Black (2019) recently described
“The Insufficient Testing Pitfall.” They note: “Testing
less than the target failure rate doesn’t prove you are
safe. In fact, you probably need to test for about 10x
the target failure rate to be reasonably sure you’ve met
it. For life critical systems this means too much testing
to be feasible.”

There is no doubt the airplane and all its software
were intricately and extensively tested. In addition,
the software would have been extensively leveraged in
simulators and in test flights. But it seems Boeing did
not test the system enough to encounter these problems.
And even if it did, what other problems would still be
missed? Companies need better plans for proving their
software works safely. Reliance on testing is not enough.

This Can Happen in Other
Organizations
It’s easy for people to read about these disasters, or any
other similar incidents caused by humans, and think they
personally would never have let such a thing happen. But
most engineers have worked on fast-paced engineering
projects and have had to make compromises to meet
deadlines. Some compromises may have been personally
initiated, while others were suggested or ordered by
management. Regardless of the source, catastrophic
events have far-reaching psychological and emotional
consequences for those who are closely involved. After
the Lion Air crash, Boeing offered trauma counseling
to engineers who had worked on the plane. A technical
manager reported that his staff were devastated.

One must also remember that nobody at Boeing
wanted to trade human lives for increased profits. All
human organizations — including families, companies,
industries, governments — are complex systems and
have a life of their own. Despite individual beliefs and
priorities, organizations can make and execute decisions
that none of the participants truly want, such as shipping
a compromised product or prioritizing profits over safety.

The organization rallied around the goals of time-
to-market and minimizing required pilot training.
Momentum and inertia kept the company marching
toward its aim, even if individuals disagreed. The
deprioritization of safety was likely silent: there was no

Documentation also promotes deeper understanding: if a
person cannot explain something in simple terms, then
that person does not understand it. If it is not explained,
nobody has a chance of understanding it.

In aviation, pilots are fanatical about documentation,
and for good reasons. In this case, improved documenta-
tion would have led to a better understanding of the
system forces at work, and alone could have potentially
saved hundreds of lives. But one high-ranking Boeing
official said the company had decided against disclosing
more details to cockpit crews due to concerns about
inundating average pilots with too much information –
and significantly more technical data – than they needed
or could digest (Pasztor and Tangel 2018).

Software teams often take this view of their users.
Perhaps it is simply a rationalization for not wanting to
put the effort into creating and maintaining documen-
tation. How can one predict what information people
need to know? What is too technical? What is enough
information? Won’t the details change as the system
evolves? How will the documentation be maintained?
Software teams hinder themselves when they neglect
documentation. The documentation process can help
new team members learn how a system is designed
and functions. Ideas for simplification will reveal
themselves, and novel ways to use the software in
ordinary cases and edge cases will be encountered.
Most importantly, poorly understood system aspects
can suddenly become obvious.

Keep Humans in the Loop
People must maintain the ability to override or overpower
an automated process. Especially when trained properly,
humans excel at dynamic information collection and
synthesis, and can improvise and make novel decisions
in response to new situations. A computer, which has
been preprogrammed to read from a limited amount of
information and perform a set of specific responses, is
not capable of improvising.

System designers and programmers are not all-
knowing. When translating from design to operations,
humans should be kept in every feedback loop. Operators
should be able to override automated processes when
and if they determine it is necessary to do so. “What
we have here is a ‘failure of the intended function,’”
remarked industry research analyst Colin Barnden. “A
plane shouldn’t fight the pilot and fly into the ground.
This is happening after decades of R&D into aviation

www.asq.org  11

The Boeing 737 MAX Saga: Lessons for Software Organizations

ACKNOWLEDGEMENTS
The authors wish to thank Stephen Smith for reviewing early drafts of
this essay. His feedback and discussion points were incorporated into
the version of this essay at https://embeddedartistry.com/blog/2019/4/1/
what-can-software-organizations-learn-from-the-boeing-737-max-saga.
In addition, thanks are offered to the journalists and aviation enthusiasts
who have published brilliant coverage and analysis for the 737 MAX case
from which the material herein has been distilled.

villainous CEO forcing his or her minions to compromise
the product. There was not an entire organization whose
individuals decided to collectively disregard safety.

Boeing made the same kinds of incremental decisions
that are being made in many other organizations on a
daily basis. Everyone has a duty to aim higher.

FIGURE 1 While the automatic trim (Trim Automatic in the below figure) was forcing
the aircraft down, the pilots countered by pointing it back up (see Trim Manual
above Trim Automatic). (KNKT 2018)

23
:1

9:
02

23
:2

0:
21

23
:2

1:
40

23
:2

2:
59

23
:2

4:
18

23
:2

5:
37

23
:2

6:
55

23
:2

8:
14

23
:2

9:
33

23
:3

0:
53

23
:3

2:
12

UTC Time (hh:mm:ss) Komite Nasional Keselamatan Transportasi

Loss of Control in Flight, 28 October 2018 UTC, Tanjung Karawang – Indonesia Investigation Number: KNKT 18.10.35.04

AIR

WARN

ACTIVE

UP

GROUND

ENGAGED
ENGAGED

ACTIVE

DOWN

AIR/GROUND
MASTER CAUTION

A/P CAPT

TRIM MANUAL

TRIM AUTOMATIC

ANGLE OF ATTACK INDICATED LEFT

ANGLE OF ATTACK INDICATED RIGHT

FLAP HANDLE POSITION

COMPUTED AIR SPEED RIGHT

COMPUTED AIR SPEED LEFT

GROUND SPEED ALTITUDE_101325MB_RFDR

ALTITUDE_101325MB_LFDR

PITCH TRIM POSITION

STICK SHAKER LEFT
STICK SHAKER RIGHT

File: Accident Flight
Republic of Indonesia

UP
DOWN

A/P FO

©2
01

9,
 A

SQ

12  SQP VOL. 21, NO. 3/© 2019, ASQ

The Boeing 737 MAX Saga: Lessons for Software Organizations

Koopman, P., A. Kane, and J. Black. 2019. Credible Autonomy Safety Argumentation.
In Proceedings of the 27th Safety-Critical Systems Symposium, February.
Available at: https://users.ece.cmu.edu/~koopman/pubs/Koopman19_SSS_
CredibleSafetyArgumentation.pdf.

Meadows, D. "Dancing With Systems. "Whole Earth Review 106 (Winter 2001): 58-63.

Pasztor, A., and A. Tangel. 2018. Boeing withheld information on 737 model, accord-
ing to safety experts and others. Wall Street Journal (November 13). Available at:
https://www.wsj.com/articles/boeing-withheld-information-on-737-model-accord-
ing-to-safety-experts-and-others-1542082575.

Sumner, T., and D. Kammeyer. 2019. BEST analysis of what really is happening
on the #Boeing737Max issue from my brother in law @davekammeyer, who’s a
pilot, software engineer & deep thinker. Available at: https://threadreaderapp.com/
thread/1106934362531155974.html.

Yoshida, J. 2019. Boeing 737 Max: Is automation to blame? EET Asia (March
19). Available from https://www.eetasia.com/news/article/Automation-and-
Boeings-B737-Max-Crash.

BIOGRAPHIES
Phillip Johnston and Rozi Harris are principals at Embedded Artistry,
an embedded systems consulting firm focused on improving early-stage
hardware product development. They build a solid foundation for new
products with systems architecture, modular firmware development,
automated software quality processes, and organization-specific product
development strategies. Their experience spans consumer electronics,
defense, automotive, robotics, cameras, drones, publishing, packaging,
product design, industrial design, product lifecycle management (PLM),
materials & assembly, supply chain, and manufacturing. Johnston can be
reached by email at phillip@embeddedartistry.com.

REFERENCES

Ackoff, R. L. "Beyond Continual Improvement." Lecture given at W. Edwards
Deming: Learning and Legacy, 1994.

Aviation Safety Network (ASN). 2018. NTSC Indonesia publishes preliminary
report on JT610 Boeing 737 MAX 8 accident. Available at: https://news.
aviation-safety.net/2018/11/28/ntsc-indonesia-publishes-preliminary-report-
on-jt610-boeing-737-max-8-accident/.

Fehrm, B. 2019. Boeing presents MCAS fix to pilots, regulators and media. Leeham
News and Analysis. Available at: https://leehamnews.com/2019/03/27/boeing-
presents-mcas-fix-to-pilots-regulators-and-media/.

Fick, M., and J. Neely. 2019. Ethiopia crash captain did not train on airline's MAX
simulator: source. Reuters (March 21). Available at: https://www.reuters.com/
article/us-ethiopia-airplane-simulator-exclusive/ethiopia-crash-captain-did-
not-train-on-airlines-max-simulator-source-idUSKCN1R20WD.

Gates, D. 2019. Flawed analysis, failed oversight: How Boeing, FAA cer-
tified the suspect 737 MAX flight control system. Seattle Times (March
17). Available at: https://www.seattletimes.com/business/boeing-aerospace/
failed-certification-faa-missed-safety-issues-in-the-737-max-system-impli-
cated-in-the-lion-air-crash/.

Gelles, D., N. Kitroeff, J. Nicas, and R. R. Ruiz. 2019. Boeing was ‘Go, Go, Go’
to beat Airbus with the 737 Max. The New York Times (March 23). Available
at: https://www.nytimes.com/2019/03/23/business/boeing-737-max-crash.html.

Komite Nasional Keselamatan Transportasi (KNKT). 2018. PRELIMINARY
KNKT.18.10.35.04 Aircraft Accident Investigation Report, Pt. Lion Mentari
Airlines, Boeing 737-8 (MAX); PK-LQP Tanjung Karawang, West Java, Republic
of Indonesia. Available at: https://reports.aviation-safety.net/2018/20181029-0_
B38M_PK-LQP_PRELIMINARY.pdf.

