
Towards a New Model of Abstraction in Software Engineering

Gregor Kiczales

Published in proceedings of the IMSA'92 Workshop on Reflection and Meta-level Architectures, 1992.

© Copyright 1992 Xerox Corporation. All rights reserved.

Appears in IMSA’92 Proceedings (Workshop on Reflection and Meta-level Architectures).

Towards a New Model of Abstraction in the Engineering of Software

Gregor Kiczales
Xerox Palo Alto Research Center�

We now come to the decisive step of mathematical abstraction: we forget about what the symbols stand for...

[The mathematician] need not be idle; there are many operations he can carry out with these symbols, without

ever having to look at the things they stand for.

Hermann Weyl, “The Mathematical Way of Thinking”

(This appears at the beginning of the Building Abstractions With Data chapter of “Structure and Interpretation

of Computer Programs” by Harold Abelson and Gerald Jay Sussman.)

This is an abridged version of a longer paper in preparation. The
eventual goal is to present, to those outside of the reflection and
meta-level architecturescommunity, the intuitions surroundingopen
implementations and the use of meta-level architectures, particu-
larly metaobject protocols, to achieve them.
The view of abstraction on which software engineering is baseddoes
not support the reality of practice: it suggests that abstractions hide
their implementation, whereas the evidence is that this is not gener-
ally possible. This discrepancy between our basic conceptual foun-
dations and practice appears to be at the heart of a number of porta-
bility and complexity problems.
Work on metaobject protocols suggests a new view, in which ab-
stractions do expose their implementations, but do so in a way that
makes a principled division between the functionality they provide
and the underlying implementation. By resolving the discrepancy
with practice, this new view appears to lead to simpler programs.
It also has the potential to resolve important outstanding problems
surround reuse, software building blocks, and high-level program-
ming languages.

Abstraction In Action

I want to start by talking about the current view of abstraction in
software engineering: how we use it, what the principles are, what
the terminology is and what it does for us. Rather than attempting
any sort of formal definition, I will just use an example. I will talk
about the implementation of a familiar system, using familiar terms
of abstraction, with the goal of getting the terminology I am going
to use out on the table.

Consider the display portion of a spreadsheet application. In
practice, the implementation would be based on “layers of abstrac-
tion” as shown in Figure 1. The spreadsheetwould be implemented
on top of a window system, which would in turn be implemented
on top of an operating system and so on down (not very far) to the
machine.

The horizontal lines in the figure are commonly called “abstrac-
tion barriers,” “abstractions” or “interfaces.” Each provides useful

�3333 Coyote Hill Rd., Palo Alto, CA 94304; (415)812-4888;
Gregor@parc.xerox.com.

c1992 Xerox Corporation. All Rights Reserved.

Spreadsheet
 Application

Window System

Operating System

.

.

.

Figure 1: The layers of abstraction in the display portion of a
spreadsheet application.

functionality while hiding “implementation details” from the client
above.1 To the degree that an abstraction provides powerful, com-
posable functionality, and is free of implementation issues, we call
it “clean” or “elegant.” In the particular case of the window system,
the abstraction would provide the ability to make windows, arrange
them on the screen,display in them, track the mouse etc. Issues such
as how the windows are represented in memory and how the mouse
is tracked would be hidden as implementation details.

There seem to be (at least) three basic principles underlying our
view of abstraction:

� The first, and most important, has to do with management of
complexity. In this sense, abstraction is a primary concept in
all engineering disciplines and is, in fact, a basic property of
how people approach the world. We simply can’t cope with
the full complexity of what goes on around us, so we have
to find models or approximations that capture the salient fea-
tures we need to address at a given time, and gloss over issues
not of immediate concern.

� Second, is a convention that a primary place to draw an ab-
straction boundary is between those aspects of a system’s be-
havior that are particular to a particular implementation vs.

1In this paper, the terms client and application are used to refer to a piece of soft-
ware that makes use of some lower-level software; i.e. the spreadsheet is a client of the
window system.

for i = 1 to 100
 for j = 1 to 100
 mkwindow(100, 100, i*100, j*100)
 end
end

..
.

Figure 2: A spreadsheet looks like a rectangular array of cells. The simplest way to implement it is to use one window for each cell.

those aspects of its behavior that common across all imple-
mentations.

� Third, is a sense that not only is the kind of abstraction bound-
ary that arises from the secondprinciple useful, it is in fact the
only one it appropriate to give to clients. That is, we believe
that issues of an interface’s implementation are not of concern
to, and should be completely hidden from, clients.

(Note that the first of these is so basic that it rarely, at least in
our field, gets explicit attention. But arguably, what our informal
notions of elegance, cleanliness, and orthogonality are about is the
degree to which an abstraction includes those issues which are im-
portant without including any that are not.)

Layered on top of these three principles are our goals of porta-
bility, reusability and in fact the whole concept of system software.
The idea has been that by taking commonly useful, “basement-level,”
functionality — memory allocators, file systems, window systems,
databases,programming languagesetc. — giving it a general-purpose
interface, and isolating the client from the implementation, we could
make it possible for a wide range of clients to use the abstraction
without caring about the implementation. Portability stems in par-
ticular from isolating the client from implementation details; this
makes it possible to have other implementations of the abstraction
which the client code can be ported to. Reuse stems in particular
from making the abstraction general-purpose; the more general it
is, the wider a variety of clients that can use it.

In line with this story, it should be an easy matter to implement
a spreadsheet on top of a clean, powerful window system. What is
needed is just a rectangular array of cells; we need to be able to dis-
play and type in each cell independently; and we need to know when
the mouse is clicked over a cell. Since this is exactly the functional-
ity a window system provides, the simplest way to code the spread-
sheet is to use one window for each cell. This takes advantage of
the high-level window system abstraction to cleanly express what
is desired, and makes maximal reuse of the existing window system
code. A program written in this fashion is shown in Figure 2.

This is abstraction at its best. The code is simple, clear, and we
can read it without having to know anything about the inner work-
ings of the underlying implementation. Abstraction here is doing
just what our small minds need: making it possible for us to think
about important properties of our program — its behavior — with-
out having to think about the entirety of the machinations the under-
lying hardware is having to perform to get it to run.

As wonderful as this may sound, few experienced programmers
would be surprised if this code didn’t quite work. That is, it might
work, but its performance might be so bad as to render it, in any
practical sense, worthless. This can happen if the window system

implementation is not tuned for this kind of use. As part of writ-
ing the window system, the implementor is faced with a number of
tradeoffs, in the face of which they must make decisions. No matter
what they do, the window system will end up tuned for some appli-
cations and against others. In this case, the implementor might have
assumed that 25 to 50 windows was a more typical number for an
application to use than 10; 000. They might also have assumed that
the typical configuration of windows would have an irregular, rather
than highly-regularized, geometry. Implementation decisionsbased
on these assumptions, once made, become locked away behind the
abstraction barrier as implementation details.

We are all familiar with this sort of situation, and probably have
a good sense of how we would respond. But, stepping back and
looking through it carefully is fruitful. There are several points to
notice: (i) While the simple program in Figure 2 may not perform
adequately, its intended behavior is perfectly clear. In other words,
the window system abstraction itself is adequate for expressing the
behavior the client programmer is after. (ii) The fact that the im-
plementation will fail to provide adequate performance is nowhere
evident in the client code. That is, the window system abstraction
is not, in and of itself, betraying these properties of the implemen-
tation. (It’s also likely to be the case that this performance property
can’t be gleaned from reading the window system documentation.)
(iii) So, predicting and/or understanding the performance properties
of this program can only be done with knowledge of internal aspects
of the window system implementation — the so-called “hidden im-
plementation details.” (iii) Finally, it is relatively easy to imagine
an implementation of the window system in which this code would
perform adequately. Moreover, such an implementation might not
be all that different from the existing one.2

What is clear then is that there is a basic discrepancy between
our existing view of abstraction and the reality of day-to-day pro-
gramming. We say that we design clean, powerful abstractions that
hide their implementation, and then use those abstractions, without
thinking about their implementation, to build higher-level function-
ality. But, the reality is that the implementation cannot always be
hidden, its performance characteristics can show through in impor-
tant ways. In fact, the client programmer is well aware of them, and
is limited by them just as they are by the abstraction itself.

Looking ahead, the idea underlying the new abstraction frame-

2The issue is whether a window is a large structure, which locally caches derived
properties, or whether it is a small structure, which continually recomputes derived
properties from its parent (i.e. does a window know its position, or does it have to ask
its parent). In the latter approach, a great deal of memory could be saved on the cell
windows. Each could be as small as a word, or even take up no storage at all in more
radical architectures. In addition to saving memory, certain operations could be sup-
ported more efficiently. For example, to tell which cell the mouse was over, the main
window could, because of the regular geometryof the cells, do simple arithmetic rather
than using the more general mechanism of polling all the cell windows.

work will be to try and preserve what is good and essential about
our existing abstraction framework — essentially the first two bul-
leted principles — while seeking to address the conflict between the
third basic principle and the reality of practice. In doing this, the
strategy will be to try and take advantage of the fact that very of-
ten, as in this example, our abstractions themselves are sufficiently
expressive and our implementations may only be deficient in small
ways. What we will end up doing is “opening up the implemen-
tation,” but doing so in a principled way, so that the client doesn’t
have to be confronted with implementation issues all the time, and,
moreover, can address some implementation issues without having
to address them all.

Outline of the Paper

The rest of this paper expands this basic argument for open imple-
mentations. First, the consequences of the deficiency in our cur-
rent abstraction framework are discussed, using both the window
system example and an example from high-level programming lan-
guages. The application of metaobject protocol technology to these
problems is discussed, and the new model of abstraction, drawn out
from the intuitions underlying the metaobject protocol work, is pre-
sented. Given the new model, it is possible to identify a wide range
of other work in the software engineeringcommunity which not only
seems to confirm the intuition that the old model of abstraction is in-
valid but which in fact seems to be headed in the same direction as
the framework presented in this paper. Finally there is a discussion
of what future work might be required as part of continuing to de-
velop this new abstraction framework.

The Origins of Complexity and Portability Problems

Cases like the spreadsheet application, where an abstraction itself is
adequate for the client’s needsbut the implementation shows through
and is in some way deficient are common. The machinations the
client programmer is forced into by these situations make their code
more complex and less portable. These machinations fall into two
general categories: (i) Reimplementation of the required function-
ality, in the application itself, with more appropriate performance
tradeoffs; and (ii) coding “between the lines.”

Reimplementation of functionality is what would mostly likely
happen in this case. The spreadsheet programmer would end up
writing their own “little window system,” that could draw boxes
on the screen, display in them, and handle mouse events. Reimple-
menting this way would allow the the programmer to ensure that the
performance properties met their particular needs. As suggested by
Figure 3, reimplementing part of the underlying functionality this
way increases the size of the application, and, therefore, the total
amount of code the programmer must be responsible for.

In addition to making the application strictly larger, reimplemen-
tation of underlying functionality can also cause the rest of the ap-
plication — the code that simply uses the reimplemented function-
lity — to become more complex. This happens if for some reason
the newly implemented functionality cannot be used as elegantly as
the original underlying functionality. This in turn can happen if, for
any reason, the programmer cannout manage to slide the new im-
plementation in under the old interface.

Once the programmer is forced away from being able to use the
old interface, and into the problem of designing one of their own, its
quite likely they won’t do as good a job. Simply put, the application
programmer doesn’t have the time (even if they do have the interest)
to design the new interface as cleanly as might be nice.

(As an aside, its worth point out that even if the interface ends
up being just as (or more) elegant, one of the primary purposes of

application has
its own miniature
window system

Spreadsheet
 Application

Window System

Operating System

.

.

.

Figure 3: The spreadsheet application after being revised around
the performance problems of the window system. The reimple-
mentation of functionality which could not be reused from the win-
dow system appears as a ‘hematoma’ in the application. Each such
hematoma increases the size of the application. In addition, the rest
of the application can get more complex when it is rewritten to use
the new functionality.

high-level standardization — to be able to easily read each other’s
code — has been defeated.)

Coding between the lines is happens when the application pro-
grammer writes their code in a particularly contorted way in order
to get better performance. A classic example is in the use of virtual
memory. In a program that allocates a number of objects, there is
often a order to allocating those objects that is “natural” to the pro-
gram. But, if there get to be a lot of objects, and paging behavior be-
comes critical, people will often rewrite the application to “allocate
the objects close to each other” and thereby get better performance.
This is coding between the lines because although the documented
virtual memory abstraction makes no mention about the physical
locality of objects, the programmer manages to contort their code
enough to “speak to” the inside of the implementation and get the
performance they want.

When programmers are forced into these situations, their appli-
cations become unduly complex and, more importantly, even less
portable. It is easiest to see how this happens by starting with a hy-
pothetical prototype implementation, coded on a machine that was
fast enough that the programmer was not forced into these sins, and
then looking at what happens as the application is moved to a deliv-
ery platform. (In reality, code is usually “optimized” when it is first
written, but this simpler case makes what happens more clear.)

The original implementation is simple, clearand makes the great-
est re-use of the underlying abstractions (i.e. the simple spreadsheet
implementation). But, when it comes time to move it to the delivery
platform, a number of performance problems come up that must be
solved. A wizard is brought in, and through tricks like those men-
tioned above, manages to improve the performance of the applica-
tion. Effectively, the wizard convolves the original simple code with
their knowledge of inner workings of the delivery platform.3 (The
term convolves is chosen to suggest that, as a result of the convolu-
tion, properties of the code which had been well localized become
duplicated and spread out.) In the process, the code becomes more
complex and implicitly conformant to the delivery platform. When
it comes time to move it to another platform, the code is more dif-

3Note that putting it this way explains why the informal term “wizard” refers to
someone who not only is good at working with a given abstraction (i.e. a window sys-
tem), but who is also intimately familiar with the inner workings of the implementa-
tion. Simply put, the wizard is someone who specializes at doing what our traditional
abstraction story says should never happen.

original
 simple
 code

 larger, more
 complex code
implicitly conforms
 to platform A

wizard

development
 platform

 delivery
platform A

 delivery
platform B

?

Figure 4: When an application is originally written on a fast machine, the code can start out being simple. To port the code to a delivery
platform a wizard — someone who understands the inner workings of the delivery platform — is brought in to tune the code. The application
gets larger and more complex, and above all it becomes implicitly adapted to the delivery platform. It is then even more difficult to move it
to another platform.

ficult to work with, and because of the implicit conformance, it is
difficult to tell just why things are the way they are. This is shown
in Figure 4.

High-Level Languages

I found a large number of programs perform poorly
because of the language’s tendency to hide “what is

going on” with the misguided intention of “not
bothering the programmer with details.”

N. Wirth, “On the Design of Programming
Languages,” [Wir74]

I want to look next at the domain of high-level programming
languages, where the reflection and meta-level architectures com-
munity has done a lot of work to address these kinds of problems.
First, I will show, using the Common Lisp Object System (CLOS)
[Kee89, Ste90], how the same sorts of problems can come up. I will
then show how those problems are addressed by the CLOS Metaob-
ject Protocol (CLOS MOP) [BKK+86, Kic92, KdRB91]. From there,
it will be possible to generalize and present the new model of ab-
straction.

Consider the following CLOS class definitions:

(defclass position ()
(x y))

(defclass person ()
(name age address ...))

The class position might be part of a graphics application,
where the instances are used to represent the position of the mouse
as it moves. The class defines two slots, x and y.4 The behavior of
the application is such that there will be a very large number of in-
stances, both slots will be used in every instance and access to those
slots should be as fast as possible.

The second definition,person, might come from a knowledge
representation system, where the instances are being used as frames.
In this case, the class defines a thousand slots, corresponding to the
many properties of people which might be known. As with the class
position, the behavior of the application means that a couple of
things are known: there will be a very large number of instances;
but in any given instance only a few slots will actually be used.

4Slot is the CLOS term for the fields of an instance.

Clearly, the ideal instance implementation strategy is different
for the two classes. For position, an array-like strategy would
be ideal; it provides compact storage of instances, and rapid access
to the x and y slots. For person, a hash-table like strategy would
be more appropriate, since it isn’t worth allocating space for a slot
until it is known that it will be used. This makes access slower, but
it is a worthwhile tradeoff given a large number of instances.

What is most likely to be the case, in a run-of-the-mill CLOS im-
plementation sans MOP,5 is that the implementor will have chosen
the array-like strategy. The prospective author of theperson class
will find themselves in a situation very much like that of the spread-
sheet implementor above: While the CLOS language abstraction it-
self is perfectly adequate to express the behavior they desire, sup-
posedly hiddenproperties of the implementation — the instancerep-
resentation strategy — are critically getting in the way.

Metaobject Protocols

In this abridged version of the paper, this section is elided, since it
would be redundant for IMSA’92 Workshop attendees.

For the eventual audience of this paper, the goal of this section
will be to sketch the mechanics of metaobjectprotocols, and to show
how, by careful design, a metaobject protocol can be used to allow
the user to control critical aspects of the language implementation
strategy, without overwhelming them with what truely are imple-
mentation details.

This section will also discuss,morebriefly, how metaobjects pro-
tocols can be used to provide the user control over the semantics, or
behavior of a language.

In addition to the CLOS Metaobject Protocol, other MOPs and
reflective languageswhich might be discussedin this section include
TELOS [Pad92], ABCL/R2 [MWY91], 3-KRS[Mae87], Anibus [Rod91,
Rod92], Sartor [Ash92] and Ploy [Vah92].

A New Model of Abstraction

In the metaobject protocol approach, the client ends up writing two
programs: a base-languageprogram and an (optional) meta-language
program. The base-languageprogram expresses, the desired behav-
ior of the client program, in terms of the functionality provided by
the underlying system. The meta-language program can customize

5At this point all CLOS vendors I know of have plans to provide a metaobject pro-
tocol. So, a CLOS implementation sans MOP is more of a rhetorical tool than a reality.

Traditional
 Interface

Adjustment
Interface

Open
Implementation

Figure 5: The dual-interface framework supports the notion of an
open implementation. The client first writes a base-program, and
then, if necessary, writes a meta-program to customize the underly-
ing implementation to meet the base-program’s needs. The curved
arrow under the meta-level interface is intended to remind us that it
provides access to what have traditionally been internal properties
of the implementation.

particular aspects of the underlying system’s implementation so that
it better meets the needs of the base-language program.

What begins to emerge is a “dual-interface” picture something
like that shown in Figure 5. A high-level system (i.e. CLOS) presents
two coupled interfaces: base- and meta-level. The base-level in-
terface looks like the traditional interface any such system would
present. It provides accessto the system’s functionality in a way that
the application programmer can make productive use of and which
does not betray implementation issues. The client programmer can
work with it without having to think about the underlying imple-
mentation details.

But, for those cases where the underlying implementation is not
adequate, the client has a more reasonable recourse. The meta-level
interface provides them with the control they need to step in and
customize the implementation to better suit their needs. That is, by
owning up to the fact that users needs access to implementation is-
sues (i.e. instance implementation strategy), and providing an ex-
plicit interface for doing so, the metaobject protocol approach man-
ages to retain what is good about the first two principles of abstrac-
tion.

It is much too early to attempt to provide a complete account of
dual interface abstractions, how to design them, how to use them
or what technologies can be used to support them. But, based on
experiencewith metaobjectprotocols and other recent reflective and
meta-level architectures, some basic comments can be made.

First off, it appears that the design of base-level interfaces can
be done using existing skills. As mentioned above, we have become
quite good at designing interfaces that do not themselves betray the
implementation. We should be able to make base-level interfaces
even more clean because we will now have a principled place to
put implementation issues that the client must have access to — the
meta-level interface.

Mastering the design of meta-level interfaces, and, importantly,
the coupling between base-and meta-level interfaces is going to take
a great deal more work. But we can enumerate four preliminary,
and closely interrelated, design principles: scope control, concep-
tual separation, incrementality and robustness.

� Scopecontrolmeans that when the programmer uses the meta-
level interface to customize the implementation, they should
be given appropriate control over the scope of the specializa-
tion. One can imagine various kinds of scope control. In the
CLOS example above, the programmer wants to be able to
say both that they only want to affect the instance representa-
tion strategy, and that only want certain classes (i.e. person)
to be affected. Other classes, particularly classes that are part

of other applications, should not be affected. The window
system case is analogous; some windows should use the im-
plementation tuned for spreadsheets whereas others should
use the default implementation.

� Conceptual separationmeans that it should be possible to use
the meta-level interface to customize particular aspects of the
implementation without having to understand the entire meta-
level interface. So, for example, the client programmer who
wants to customize the instance implementation strategy shouldn’t
also have to be concerned with the method dispatch mecha-
nism. This of course is difficult, since implementation issues
can sometimes havesurprisingly far-reaching effects. The chal-
lenge, as discussed in [LKRR92], is to come up with a suffi-
ciently fine-grained model of the implementation.

� Incrementality means that the client who decides to customize
some aspect of the implementation tradeoffs wants to do just
that: customize those properties. They don’t want to have to
take total responsibility for the implementation and they don’t
want to end up having to write a whole new implementation
from scratch. It must be possible for them to say just what it
is they want to have be different, and then automatically reuse
the rest of the implementation. This is the salient difference
between the more recent reflective systems (CommonLoops,
3-KRS and beyond) and the original 3-Lisp work: by using
object-oriented techniques, it has been possible to support the
incremental definition of new implementations (interpreters,
runtimes etc.) using subclass specialization. (More is said
about object-oriented techniques later in the paper.)

� Robustness6 simply means that bugs in a client’s meta-program
should have appropriately limited effect on the rest of the sys-
tem. To date, much of the work in the reflection and metaob-
ject protocols community has provided only limited robust-
ness, either by checking the results of functional protocols, or
absorbing it from the underlying runtime in imperative7 pro-
tocols. But these approaches significantly restrict the power
of the protocol. In more recent work, we are beginning to ex-
plore the use of more declarative protocols, combined with
partial evaluation techniques to recover the performance loss
[Ash92]. This remains a major open problem.

These four principles are not entirely orthogonal. Take for ex-
ample, support for defining a new instance implementation strat-
egy in the CLOS MOP. While it is easy to say that it does well on
each of the first three, it is difficult to point to particular parts of the
CLOS Metaobject Protocol design and say “Scope control comes
from here and incrementality comes from here.” Instead, they all
seem to be intertwined; they all have to do with various kinds of
“locality.”

In fact, much of the recent work on reflective systems can be
seen as experiments with locality. Group-wide reflection, one metaob-
ject per object languages, metaobjects on a per-class basis, reify-
ing the generic function rather than letting the class handle method
dispatch — all of these provide different kinds of locality control
[Coi87, IMWY91, IO91, Mae87, MWY91, WY90, WY91] (as well
as many of the other papers appearing in this workshop). What is
clear is that there is no one right or most elegant metaobject struc-
ture, each has relative costs and advantages,and we need to keep ex-
perimenting to learn about how to handle locality this way. (There
is more to say about the subject of locality as the paper progresses.)

6This term is somewhat problematic, as it has particular technical meaning in some
communities. Later in the paper, it will become clear that what is needed is a term that
in some sense spans (at least) all of safety, reliability and security.

7In [KdRB91] we used the term procedural instead of imperative.

It is also possible to make a basic comment about the way the
designer of a dual-interface abstraction — or any open implementa-
tion — works: iteratively. They start with a traditional abstraction
(i.e. a window system or CLOS), and gradually add a meta-level
interface as it becomes clear what kinds of ways a close implemen-
tation can cause problems for the users. Moreover, it isn’t a good
idea to try and make the first version of a new kind of system open
in this sense. Opening the implementation critically depends on un-
derstanding not just one implementation the clients might want, but
also the various kinds of variability around that point they might
want. In this mode of working, user bug-reports and complaints
about previous versions of the system take on an important value.
We can look for places where users complained that they wanted
to do X, but the implementation didn’t support it; the idea is to add
enough control in the meta-level interface to make it possible to cus-
tomize the implementation enough to make X viable. (In fact, in
work on the CLOS Metaobject Protocol, we spenta lot of time think-
ing about these kinds of bug reports.)

Another way of thinking about the design of meta-level inter-
faces can be found in a 1980 paper by Mary Shaw and Wm. Wulf
[SW80], in which they present an interesting (and prescient) intu-
ition about the situation: “Traditionally, the designers and imple-
mentors of programming languages have made a number of deci-
sions about the nature and representation of language features that...
are unnecessarily preemptive.” By preemptive, they mean a deci-
sion, on the part of the implementor (or the language designer), that
preempts the programmer from being able to use a language feature
in a way that otherwise appears natural. (A specific example they
give has to do with the choice of representation of arrays.) Their
paper is focused primarily on programming language implementa-
tions, but the notion of preemption is a powerful one to work with
when thinking about any kind of meta-level interface. It suggests
that anytime we find ourselves saying “well, I’ll implement this fea-
ture a particular way because I think most users will do X,” we should
immediately think about the other users, the ones whose options we
are about to preempt, and how, using a meta-level interface, we might
allow them to customize things so they can do other than X.

A Recap

At this point, it is possible to give a capsule summary of the argu-
ment so far:

In practice, high-level abstractions often cannot hide
their implementations — the performance characteris-
tics show through, the user is aware of them, and would
be well-served by being able to control them. This hap-
pens becausemaking any concrete implementation of a
high-level system requires coming to terms with a num-
ber of tradeoffs. It simply isn’t possible to provide a
single, fixed, closed implementation of such a system
that is “good enough” that all prospective users will be
happy with it. In other words, the third principle of ab-
straction presented above appears to be invalid, at least
in actual practice.

Work on metaobject protocols and other meta-level ar-
chitectures suggests a new abstraction framework that
better addressesthe need for open implementations. Un-
der this framework the abstraction presented by a sys-
tem is divided into two parts: one that provides func-
tionality in a traditional way and another that provides
control over the internal implementation strategies sup-
porting that functionality. This approachretains the first

two principles of the old abstraction framework, drop-
ping only the third.

Looking At Other Work

With this summarization in mind, it becomes possible to look for
other areas where open implementations and dual interface abstrac-
tions could be particularly advantageous. In doing so, what we are
trying to assess is how much of the argument presented above ap-
plies in domains other than high-levelprogramming languages. Clearly
we would expect the basic argument for open implementations to
move across — after all, we started with a window-system not a
programming language. On the other hand, we may or may not ex-
pect the concept of metaobject protocols (or at least our current no-
tion of them) to move to memory systems or schedulers. And in
between those two levels are the crucial intermediary notions of lo-
cality, reflection, meta, and object-oriented programming. By look-
ing at other examples, we hope to get a better sense of the overall
picture and where each of these important concepts fits in it.

We are looking for systems of more than modest functionality,
yet where performance is an issue. The whole category of system
software — operating systems, window systems, database systems,
RPC mechanisms etc. — is a natural place to look. The abstrac-
tions have been well-honed over the years, there is tremendous un-
derstanding of the different kinds of implementation strategies that
can be useful and, because these systems underlie everything else
we build, the potential payoff of increased understanding of their
nature is large.

It turns out that not only does work in these areas appear to sup-
port the basic argument for open implementations, but in fact there
appears to be a lot of work already going on that is driving in similar
directions.

Programming Languages

A number of programming language projects have discovered that
attempting to give their users a black-box abstraction with a single
fixed implementation does not work. In some sense, compiler prag-
mas were the first example of this — they can be thought of as open
implementations with a “declarative” meta-level interface.

In Hermes [Hermes book], several of the built-in data structures
come with a small collection of different implementations. This,
like pragmas, is a step in the direction of open implementations —
several implementations is after all more than one, and letting the
user choose is a step in the direction of openness. But, it does not
completely solve the problem because there is no reason to believe
that some prospective users will not want an implementation that
is different from any of the ones provided. The designers of Her-
mes are aware of this limitation, it is just that their concern for ro-
bustness (safety in particular) has so far prevented them from adopt-
ing the more powerful reflective or metaobject protocol techniques
[Yemeni, private conversation]. One possibility might be to add an
internal metaobject protocol, which the designerscould use to quickly
provide clients with newly requested implementations, but which
would not be documented to normal users.

As discussed by Rodriguez [Rod92], the same sort of situation
can be seen in languages for parallel programming. A key prob-
lem in this domain is that a compiler that attempts to automatically
choose program’s parallelization is often unable to do so optimally.
Having recognized this problem, this community has developed ar-
chitectures that allow the programmer to step in, in various ways,
and direct the parallelization [Ber90, CiCL88, Hoa85, LR91, Luc87,
YiC90]. These systems bear varying degrees of resemblance to ex-
plicit meta-level architectures, with one key difference being that

they have not (yet) adopted the use of object-oriented techniques to
organize the meta-level.

At least one language has gone farther, to have what is clearly
a metaobject protocol, the only difference being that they don’t use
the terminology we do. Joshua is a rule-based inference system de-
veloped at Symbolics [RSC87]. BecauseJoshua is such a high-level
language, its default implementation can perform quite poorly on
some examples. By allowing the client to step in and customize
the inference mechanism to better suit the particular example, they
sometimes get substantial performance improvements [Shrobe, pri-
vate conversation].

Operating Systems

The operating system community long ago began to push up against
the boundaries of the traditional black-box abstraction framework.
Very early on, virtual memory systems provided limited meta-level
interfaces that allowed clients to influence what page-replacement
strategy was used (i.e. the Unix madvise facility). More recently,
there has been a move, starting with systems like the Mach external
pager, from the declarative approach to an approach more like that
of metaobject protocols. Specifically, they are using object-oriented
and imperative techniques to organize the meta-level.

Using this more powerful imperative approach, there has been
similar work opening up thread packagesand load-balancing mech-
anisms [ALL89]. In fact, people associated with this work have,
more recently, been explicitly questioning the validity of the tra-
ditional closed-implementation notion of system software in many
of the same ways discussed in this paper.[Anderson, talk at PARC]
(Within the reflection community, there is of course the Muse work
at Sony, which has been explicitly addressing these issues for some
time [YTT89].)

In the operating system community, where there is a great deal
of emphasis on reliability, the architectures have been interestingly
different than in the metaobject protocol community. They have
done a much better job of achieving robustness. The various ef-
forts at reducing the size of the kernel are largely driven by a desire
to make as much of the traditional operating system functionality
user-replaceable. On the other hand, even though there is no appar-
ent tradeoff between robustness and incrementality, they have done
much less well at providing incrementality.

Other Systems

Looking at other kinds of systems software turns up similar kinds
of work, although perhaps not as aggressively open as in the op-
erating system community. There are interesting things to be said
about databases, RPC mechanisms and document processing sys-
tems. In fact, the spreadsheet example presented in this paper was
drawn from work at PARC which explicitly addressed the applica-
bility of metaobject protocol ideas to the window system domain
[Rao90, Rao91].

Future Work

Changing something as fundamental as our underlying conception
of abstraction is not going to be a small task. All of our current de-
sign principles, conventions, tools, techniques,documentation prin-
ciples, programming languages and more rest on the more funda-
mental notion of abstraction. This section provides a short sampling
of what might need to be done, ranging from the relatively straight-
forward — assuring ourselves that the need for open implementa-
tions and a corresponding revision of our abstraction framework is
in fact genuine — to the more far reaching — working out the ram-
ifications of this revision, and what it will take to get it to work.

Much of what needs to be done involves looking at basic con-
cepts in software engineering practice, to see how they depend on
the old model of abstraction and how they might need to be revised.
This includes issues like portability, software building blocks and
top-down programming.

Complexity and Portability Revisited

A primary issue to be addressedhas to do with what the consequences
of the open implementation argument is for portability and com-
plexity. One of the comments I often hear, when I talk about the
metaobject protocol work, is that opening up implementations in
this way will cause client code to be more complex and create porta-
bility problems. The goal is of course very much the opposite: to
make code simpler and improve portability. But, these ideas makes
people nervous; it is important that the meta-level architectures com-
munity be able to address their concerns carefully.

The criticism from skeptics is: (i) You are allowing the client to
muck with implementation issues that used to be hidden. (ii) This
will result in code that is more complex, and wedded to features spe-
cific to the implementation. (iii) This will make the code more dif-
ficult to work with and less portable.

The counterargument is: (i) Clients already are aware of the im-
plementation issues, it is just that we havebeen trying to pretend that
wasn’t the case. That is the whole thrust of the first part of the pa-
per. (ii) We believe that client code will be simpler, because it will
be able to reuse more of the underlying functionality. There won’t
be hematomas and other complexities that currently result from per-
formance problems in the library functionality. It is also important
to understand that the meta-level interface is not implementation-
specific. It applies to all implementations of the system. What is
implementation-specific is the default implementation. So, the meta-
program, since it is a customization of the default implementation,
may end up dependingon properties of the implementation for which
it is written but: (a) programs already are implementation-specific;
(b) in the new framework this dependencewill be more explicit since
it will be isolated to the meta-program; and (c) if there is less code
to work with it will be easier to work with no matter what.

Higher-Level Building Blocks

The concept of open implementations has significant ramifications
on our concepts of what kinds of building blocks it might be possi-
ble to work with in the future. Learning how to make clean, pow-
erful open implementations should result in being able to build and
work with higher-level building blocks, which should in turn result
in simpler application programs. This expectation is based on the
belief that what has kept us from being able to successfully develop
very high level libraries has been our inability to provide (closed)
implementations that pleased enough users.

The programming language domain is perhaps the place where
it is most clear that a large part of what has kept us at a low-level is
the closed implementation framework. High-level languages have
enjoyed limited success in large part due to performance problems.
We haven’t been able to getgood enough performance out of higher-
level languages because we haven’t been able to write compilers
that are “smart enough” to satisfy all the users. But, the open im-
plementation idea fundamentally acknowledges that if a language
is more than modestly high-level, it simply isn’t possible to build
a closed compiler that is smart enough. We must instead open the
compiler up so that the programmer, who knows a great deal about
how they want their program to be compiled, can step in and help.

This restraining force on high-level languages is particularly ev-
ident in the earlier quote from Wirth. Essentially, his argument is

that since it isn’t possible to properly implement high-level func-
tionality (using a closed implementation), the language should be
restricted to providing only low-level functionality. The question
now is whetheropen implementations and the dual interface abstrac-
tion framework make it possible to make truly high-level languages
with good performance. Experiments need to be done with a variety
of such languages.

Top Down Programming vs. Reuse

In the previously mentioned paper by Shaw & Wulf they make the
claim that top-down programming is fundamentally at odds with
reusable code libraries and eventhe notion of system software. Their
argument, as I understand it, is that a reusable library essentially
blocks, at the abstraction boundary, the downward flow of design
decisions, preventing those decisions from leaking into the library’s
implementation as we would like.

Their argument is essentially compatible with the one presented
in this paper. From the dual interface abstraction point of view, the
conflict is not between top-down programming and reusable code;
it is between top down programming and closed implementations
of reusable code. This leads to another way of thinking about open
implementations, complementary to the dual interface model. The
idea is that reusable code should be like a sponge: It provides basic
functionality (the base-level interface), basic structure (the default
implementation) but also allows the user to “pour in” important cus-
tomizations from above to “firm it up.”

Work needs to be done to go back and look at top-down pro-
gramming and the conflict Shaw & Wulf mention to see how it in-
forms the open implementation and dual interface abstraction frame-
works.

Multiple Open Layers

This view of top-down programming makes it clear that opening an
implementation only to the client immediately above is not enough.
We need to do better than that; all layers need to be open to all layers
above them. So, for example, when an application is written on top
of a high-level language, which itself sits on top of a virtual mem-
ory system, the application code needs to be able to control not just
how the language uses the memory it is allocated, but also how that
virtual memory system allocates that memory.

Work needs to be done to develop this ability to pushdown, through
multiple levels of abstraction this way.

Open Behavior

The discussion in this paper begins to provide an explanation of part
of the problem metaobject protocols are solving — specifically, the
need for open implementations. But a clear lesson from the metaob-
ject protocol work is that users can also take productive advantage
of being able to customize the semantics (or behavior) of systems
they are building on top of.

Work needs to be done to integrate the need for open behavior,
and the way that meta-level architectures provide it, into the argu-
ment presented in this paper and into any new abstraction frame-
work that is developed.

Mastering Locality

The dual interface framework is similar to the way in which one
might expectthe conversationbetween the human provider and client
of a system to talk. Much of the time they would just talk about the
functionality that would be provided. At other times they would “go

meta” and talk about how the functionality was going to be used and
crucial performance issues.

And it is by making this analogy with the discussion between
humans that we can get some insight into the problems that we will
face in really trying to get this to work: very often, the concepts that
are most natural to use at the meta-level cross-cut those provided at
the base-level. What it seems we want to be able to do is to allow
the user to use natural base-level concepts and natural meta-level
concepts — as if they were the x and y axes of a plane — to get at
just what it is in the implementation they want to affect. The prob-
lem is that the “points” in the plane spanned by these two axes are
not necessarily easy to localize in an implementation.

Take, as an example, the user of a Lisp-like language who wants
to control the tagging strategy for certain objects within a certain
part of their program. It’s quite natural for them to say something
like: “Use immediate tagging for fixnums and positions, tag rect-
angles and lines in the pointer, and tag everything else in the actual
object representations.” But, it would be surprising to find an ex-
isting compiler in which making this change was easy, much less
one that could be persuaded to have just part of a program work this
way. (Getting such a compiler architecture is the thrust of the work
reported in [LKRR92].)

We are, in essence, trying to find a way to provide two effective8

views of a system through cross-cutting “localities.” Getting this to
work, in the general case, appears to be quite difficult; aside from
crystallizing it as a problem, there isn’t much to say about it at this
time.

One strategy — the one that has been prevalent in existing meta-
level architectures — is to make the problem easier by delaying the
implementation of strategy selection until run-time or thereabouts.
So, for example, the existing metaobjectprotocols addressonly those
issues which do not need to be handled in a compile-time fashion.
The various systems that addressdistribution, concurrencyand real-
time [other papers in this proceedings]are also addressingproblems
which are amenable to architectures with runtime dispatch.

An important point is that this problem, of having to handle two
cross-cutting localities, isn’t due to the dual-interface framework. It
is a fundamental problem, it has always been there and it will always
be there. The structure of complex systems is such that it is natural
for people to make this jump from one locality to another, and we
have to find a way to support that. All the dual-interface framework
does is: (i) make it more clear that this problem needs to be solved,
and (ii), give one particular organization to the relation between the
two different localities. Of course, looking at the problem this way
makes it clear that we may well want more than two, cross-cutting,
effective interfaces to a system — the dual interface framework may
quickly become the multi-interface framework.

Summary

It runs deep in our field that we consider ourselves to be based on
mathematics. This leads us to try and take many of our basic notions
from mathematics. The fact that Abelson and Sussman would quote
Weyl the way they do is evidence of this.

But, while this appeal to mathematics for conceptual founda-
tions may be attractive, it is, at least in the case of abstraction, risky.
There is a deep difference between what we do and what mathemati-
cians do. The “abstractions” we manipulate are not, in point of fact,
abstract. They are backed by real pieces of code, running on real
machines, consuming real energy and taking up real space. To at-
tempt to completely ignore the underlying implementation is like

8Effective means essentially the same thing that “causally connected”did in Smith’s
earlier work.

trying to completely ignore the laws of physics; it may be tempting
but it won’t get us very far.

Instead, what is possible is to temporarily set aside concern for
some (or even all) of the laws of physics. This is what the dual in-
terface model does: In the base-level interface we set physics aside,
and focus on what behavior we want to build; in the meta-level in-
terface we respect physics by making sure that the underlying im-
plementation efficiently supports what we are doing. Because the
two are separate, we can work with one without the other, in accor-
dance with the primary purpose of abstraction, which is to give us a
handle on complexity. But, because the two are coupled, we have an
effective handle on the underlying implementation when we need it.
I like to call this kind of abstraction, in which we sometimes elide,
but never ignore the underlying implementation “physically correct
computing.”

This is also like what the mechanical engineers call modeling,
where they take multiple independent models of a system, each of
which highlights certain properties and sets others aside. Of course
a mechanical engineer’s models aren’t effective, and we would like
ours to be — that is a fundamental difference in what we do and
is why we can’t borrow directly from them. But, it is the case that
we are engineers not mathematicians. We would do better to look
to other engineering disciplines, and not solely to mathematics, for
our principles of abstraction.

This is, I think, the real contribution of the argument in this pa-
per: Because we are engineers, not mathematicians, we must re-
spect the laws of physics — we cannot hope to completely ignore
the underlying implementation. The particular details of the dual
interface model, the notion that two interfaces are enough, the role
of object-oriented programming, the notion of meta; all of these are
inherently approximate. What will remain, in the long term, is the
intuition of physically correct computing and the requirement that
we build open implementations.

Acknowledgments

I would like to thank Hal Abelson, J. Michael Ashley, Alan Bawden,
Danny Bobrow, John Seely Brown, Jim des Rivières, Mike Dixon,
John Lamping, Ramana Rao, Jonathan Rees, Luis Rodriguez, Erik
Ruf, Brian Cantwell Smith, Marvin Theimer and Brent Welch for
countless hours of discussion working out the ideas in this paper.

For their comments and feedback on earlier drafts of this paper
itself, I would like to thank J. Michael Ashley, Danny Bobrow, Jim
des Rivières, Mike Dixon, John Lamping and Luis Rodriguez.

References

[ALL89] T. Anderson, E. Lazowska, and H. Levy. The perfor-
mance implications of thread managementalternatives
for shared memory multiprocessors. In IEEE Transac-
tions on Computers, 38(12), pages 1631–1644. IEEE,
1989.

[Ash92] J. Michael Ashley. Open compilers. To appear in forth-
coming PARC Technical Report., August 1992.

[Ber90] Andrew Berlin. Partial evaluation applied to numeri-
cal computation. In Lisp and Functional Programming
Conference, pages 139–150, 1990.

[BKK+86] D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter,
M. Stefik, and F. Zdybel. Commonloops: Merging
Lisp and object-oriented programming. In OOPSLA
’86 Conference Proceedings, Sigplan Notices 21(11).
ACM, Nov 1986.

[CiCL88] Marina Chen, Young il Choo, and Jingke Li. Com-
piling parallel programs by optimizing performance.
The Journal of Supercomputing, 2(2):171–207, Octo-
ber 1988.

[Coi87] Pierre Cointe. Metaclasses are first class: The Ob-
jVlisp model. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), Orlando, FL,
pages 156–167, 1987.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[IMWY91] Yuuji Ichisugi, Satoshi Matsuoka, Takuo Watanabe,
and Akinori Yonezawa. An object-oriented concurrent
reflective architecture for distributed computing envi-
ronment. In 8th Conference Proceedings, Japan So-
ciety for Software Science and Technology, September
1991. (in Japanese).

[IO91] Yutaka Ishikawa and Hideaki Okamura. A new re-
flective architecture: AL–1 approach. In Proceedings
of the OOPSLA Workshop on Reflection and Metalevel
Architectures in Object-Oriented Programming, 1991.

[KdRB91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol. MIT Press,
1991.

[Kee89] Sonya E. Keene. Object-Oriented Programming
in Common Lisp: A Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[Kic92] Gregor Kiczales. Metaobject protocols — why we
want them and what else they can do. In Andreas
Paepcke, editor, Object-Oriented Programming: The
CLOS Perspective. MIT Press, 1992.

[LKRR92] John Lamping, Gregor Kiczales, Luis H. Rodriguez Jr.,
and Erik Ruf. An architecture for an open compiler.
In Proceedingsof the IMSA’92 Workshopon Reflection
and Meta-level Architectures, 1992. Also to appear in
forthcoming PARC Technical Report.

[LR91] Monica S. Lam and Martin C. Rinard. Coarse-grain
parallel programming in Jade. In Third ACM SIGPLAN
Symposiumon Principles and Practice of Parallel Pro-
gramming, pages 94–105, 1991.

[Luc87] John M. Lucassen. Types and effects: Towards
the integration of functional and imperative program-
ming. Technical Report MIT/LCS/TR-408, MIT, Au-
gust 1987.

[Mae87] Pattie Maes. Concepts and experiments in computa-
tional reflection. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 147–155,
1987.

[MWY91] Satoshi Matsuoka, Takuo Watanabe, and Aki-
nori Yonezawa. Hybrid group reflective architecture
for object-oriented concurrent reflective programming.
In European Conferenceon Object Oriented Program-
ming, pages 231–250, 1991.

[Pad92] The EuLisp Definition, April 1992. Draft.

[Rao90] Ramana Rao. Implementational reflection in Sil-
ica. In Informal Proceedings of ECOOP/OOPSLA ’90
Workshopon Reflection and Metalevel Architecturesin
Object-Oriented Programming, October 1990.

[Rao91] Ramana Rao. Implementational reflection in Silica. In
Pierre America, editor, Proceedings of European Con-
ference on Object-Oriented Programming (ECOOP),
volume 512 of Lecture Notes in Computer Science,
pages 251–267. Springer-Verlag, 1991.

[Rod91] Luis H. Rodriguez Jr. Coarse-grainedparallelism using
metaobject protocols. Master’s thesis, Massachusetts
Institute of Technology, 1991.

[Rod92] Luis H. Rodriguez Jr. Towards a better understanding
of compile-time mops for parallelizing compilers. In
Proceedings of the IMSA’92 Workshop on Reflection
and Meta-level Architectures, 1992. Also to appear in
forthcoming PARC Technical Report.

[RSC87] Steve Rowley, Howard Shrobe, and Robert Cassels.
Joshua: Uniform access to heterogeneous knowledge
structures or Why Joshua is better than conniving or
planning. In Proceedings of the Sixth National Con-
ference on Artificial Intelligence, pages 48–58, 1987.

[Ste90] Guy L. Steele. Common Lisp: The Language (second
edition). Digital Press, 1990.

[SW80] Mary Shaw and Wm. A. Wulf. Towards relaxing as-
sumptions in languages and their implementations. In
SIGPLAN Notices 15, 3, pages 45–51, 1980.

[Vah92] Amin Vahdat. The design of a metaobject protocol
controlling the behaviorof a scheme interpreter. To ap-
pear in forthcoming PARC Technical Report., August
1992.

[Wir74] Niklaus Wirth. On the design of programming lan-
guages. In Information Processing 74, 1974.

[WY90] Takuo Watanabe and Akinori Yonezawa. An actor-
based metalevel architecture for group-wide reflec-
tion. In Informal Proceedingsof ECOOP/OOPSLA ’90
Workshopon Reflection and Metalevel Architecturesin
Object-Oriented Programming, October 1990. (Ex-
tended Abstract of [WY91]).

[WY91] Takuo
Watanabe and Akinori Yonezawa. An actor-based met-
alevel architecture for group-wide reflection. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors,
Proceedingsof REX School/Workshop on Foundations
of Object-Oriented Languages (REX/FOOL), Noord-
wijkerhout, the Netherlands, May, 1990, number 489
in Lecture Notes in Computer Science,pages 405–425.
Springer Verlag, 1991.

[YiC90] J. Allen Yang and Young il Choo. Meta-crystal – a met-
alanguage for parallel-program optimization. Tech-
nical Report YALEU/DCS/TR-786, Yale University,
April 1990.

[YTT89] Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro.
A reflective architecture for an object-oriented dis-
tributed operating system. In Proceedings of Eu-
ropean Conference on Object-Oriented Programming

(ECOOP), July 1989. (also available as a technical re-
port SCSL-TR-89-001, Sony Computer Science Labo-
ratory Inc.).

